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Overview 

This report presents a framework for seasonal rainfall prediction to support sustainable 

and resilient water management across APEC economies. The framework and its 

implementation guidelines were developed by the organizers and discussed during a 

two-day workshop, where expert speakers shared insights on feature engineering and 

observational data sources, while participants contributed through presentations and 

discussions. 

The workshop explored differences between tropical and midlatitude meteorology, 

emphasizing the need for localized feature engineering techniques to improve rainfall 

prediction models. Expert speakers provided key knowledge on meteorological 

variables, observational data sources, and high-resolution model outputs critical for 

accurate predictions. Discussions among participants led to the identification of use 

cases from different economies, illustrating how different climatic and geographical 

conditions shape feature selection for predictive modeling. 

Based on the insights gathered from the workshop, this report also provides 

suggestions for refining the framework, focusing on region-specific adaptations, data 

integration strategies, and improvements in observational coverage. By synthesizing 

the organizers’ framework, expert insights, and collaborative discussions, this report 

serves as a foundation for advancing data-driven water resource management, 

disaster mitigation, and climate adaptation strategies in APEC economies. 
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Framework for Enhancing Sustainable and Resilient Water Management  

in APEC Economies 

Water management is a critical challenge for APEC developing economies, where 

climate change, rapid urbanization, and increasing water demand pose significant 

threats to sustainability and resilience. This project aims to enhance the capacity of 

APEC developing economies in long-term water management through collaborations 

with developed economies, fostering a collective effort to address these challenges. 

To achieve this objective, we have developed a Framework for Water Management in 

APEC Economies (Figure 1). The Framework offers a scalable and adaptable solution 

leveraging open environmental data. The framework is designed to provide actionable 

insights, promote data-driven decision-making, and foster stakeholder engagement to 

ensure effective and sustainable water resource management across APEC 

economies. 

 

 

Figure 1 A Framework for enhancing sustainable and resilient water 

management in APEC economies 
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Key Components of the Framework 

The framework consists of four core components, each of which addresses a critical 

aspect of water management and is guided by enabling factors that ensure successful 

implementation and long-term sustainability. 

1. Data Collection and Integration 

Reliable and comprehensive data is fundamental to effective water management. This 

component focuses on: 

● Utilizing open environmental data sources, including in-situ observations 

(e.g., river gauges, weather stations) and remote sensing data (e.g., satellite 

imagery), to capture real-time and historical water-related data. 

● Data harmonization, ensuring consistency, interoperability, and reliability by 

standardizing formats and integrating data from multiple sources to create a 

unified system. 

Key Enablers: Policy, Governance, and Sharing Agreements 

The success of data collection and integration depends on robust policies, 

governance mechanisms, and data-sharing agreements, which facilitate cross-

border collaboration and promote ethical data use. Strong governance frameworks 

ensure standardized protocols, data security, and accessibility, fostering trust and 

transparency among APEC economies. 

 

2. Data Processing and Analysis 

 

Once data is collected, advanced analytical methods are required to derive actionable 

insights. This component includes: 

● Big data tools, enabling efficient storage and processing of large datasets. 

● Time-series and geospatial analysis, allowing for the identification of trends 

and spatial relationships in water resources. 

● Predictive modeling, integrating machine learning (ML), statistical 

methods, and hybrid approaches to forecast water availability, demand, and 

risks. 

Key Enablers: Policy, Governance, and Sharing Agreements; Monitoring and 

Evaluation (M&E) 

 

Effective processing and analysis require clear governance structures to facilitate 

collaboration and data exchange. Policy, governance, and sharing agreements 
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ensure interoperability; while monitoring and evaluation mechanisms assess the 

accuracy and reliability of data processing systems, providing continuous feedback to 

improve analysis methods. 

 

3. Decision Support Systems (DSS) 

Decision Support Systems (DSS) transform processed data into actionable insights, 

helping policymakers and stakeholders make informed decisions. This component 

includes: 

● Early warning and forecast systems, offering timely alerts for floods, 

droughts, and other water-related risks. 

● What-if scenario modeling, enabling stakeholders to simulate potential 

outcomes of different decisions or events, and assess their impacts. 

● Resource allocation tools, optimizing water resource distribution to ensure 

equitable access and efficient usage. 

Key Enablers: Monitoring and Evaluation; Key Performance Indicators (KPIs)  

Monitoring and evaluation ensure that DSS tools remain effective and relevant, 

providing measurable insights into performance and efficiency. KPIs, such as 

response times, forecast accuracy, and decision-making effectiveness, provide 

quantitative metrics that drive continuous improvement. 

 

4. Capacity Building and Stakeholder Engagement 

 

A sustainable water management system requires active participation and knowledge 

dissemination. This component focuses on: 

● Training programs, equipping officials, water managers, and local 

communities with skills to utilize data-driven tools effectively. 

● Community involvement, ensuring local perspectives and knowledge are 

integrated into water management strategies. 

● Public awareness initiatives, fostering a culture of water conservation and 

responsible use through outreach and communication efforts. 

Key Enabler: Key Performance Indicators (KPIs) 
 

Defining and tracking KPIs is crucial for assessing the effectiveness of capacity-

building efforts. Metrics such as stakeholder participation rates, training completion 
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levels, and public engagement outcomes provide tangible indicators of success and 

inform necessary adjustments to ensure long-term impact. 

 

Key Focus Areas of the Framework  

Core Model Engine Development 

The Framework places significant emphasis on developing predictive models using a 

structured pipeline that includes data integration, especially the following components: 

(1) Data integration: Integrating and preprocessing data from various sources. These 

include standardizing formats, cleaning incomplete or noisy data, and ensuring 

consistency and interoperability across datasets to create a unified and reliable input 

for subsequent steps. 

(2) Feature engineering: Selecting relevant variable fields for predicting rainfall, 

considering meteorological regions such as tropical, subtropical, and midlatitude.  

(3) Model selection: Choosing models suited to the physics of the region of interest. 

The use of machine learning, statistical techniques, or their hybrid ensures predictive 

models deliver accurate and reliable insights to support decision-making processes. 

(4) Model training and validation: Training the model with the selected data and 

validating the model outputs using observations. 

(5) Application: Implementing the trained model in operational systems to provide 

real-time predictions and support decision-making. 

Public Awareness 

Public engagement plays a pivotal role in ensuring the successful implementation of 

the Framework. Training programs, workshops, and outreach initiatives aim to educate 

stakeholders on best practices, increase community participation, and create a sense 

of ownership in water management efforts. 
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Implementation Guideline for the Water Management Framework 

Effective water management is critical for ensuring sustainable development, mitigating 

climate change impacts, and addressing growing water-related challenges such as scarcity, 

flooding, and pollution. This Framework Implementation Guideline provides a structured, 

step-by-step approach to assessing water resource issues, building robust data infrastructure, 

developing decision-support systems, and scaling solutions economy-wide. By leveraging 

modern technologies such as the Internet of Things (IoT), machine learning models, and real-

time monitoring, this framework enables informed decision-making and proactive water 

resource management. Furthermore, capacity-building efforts ensure that stakeholders 

including policymakers, technical experts, and local communities are equipped with the 

necessary skills to implement and sustain these strategies. Through this guideline, economies 

can build resilience, enhance efficiency, and foster long-term sustainability in water 

management. 

 

Figure 2 A Framework Implementation Guideline for enhancing sustainable 

and resilient water management in APEC economies 
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The framework implementation consists of the following steps: 

1. Assessing Economy’s Water Challenges and Priorities 

The first step in implementing the framework is to assess the specific water challenges 

and priorities of the economy. This requires conducting water resource assessments 

using Geographic Information Systems (GIS) and hydrological models. The 

assessment should identify key challenges such as water scarcity, flooding, and 

pollution. Stakeholder engagement is crucial in this phase to ensure diverse 

perspectives are included. Additionally, clear and measurable water management 

goals should be defined, aligning them with domestic priorities. 

Key Actions: 

● Conduct water resource assessments using GIS and hydrological models. 

● Identify key challenges, including water scarcity, flooding, and pollution. 

● Engage stakeholders to integrate their perspectives into the framework. 

● Define measurable goals aligned with domestic and regional water 

management priorities. 

Key Actions for Capacity Building: 

○ Engage stakeholders in water resource assessment and raise awareness of 

water challenges. 

○ Train stakeholders on open-data usage and inclusive decision-making 

processes. 

2. Building Data Infrastructure 

A strong data infrastructure is essential for efficient water management. This involves 

leveraging open data sources, IoT sensors, and remote sensing technologies to 

monitor water resources. Standardizing data formats for seamless integration across 

platforms is necessary. Ensuring data privacy, security, and ethical use is also a 

priority. Stakeholders must be trained in data collection, processing, and analysis tools 

to maximize the benefits of the infrastructure. 

Key Actions: 

● Utilize open data sources, IoT sensors, and remote sensing technologies. 

● Standardize data formats for easy integration and interoperability. 

● Ensure data privacy, security, and ethical data use. 

● Provide training to stakeholders on data collection and analysis tools. 

Key Actions for Capacity Building: 
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○ Provide technical training on loT sensors, remote sensing, and cloud 

platforms. 

○ Develop skills in data harmonization, secure data sharing, drafting data-

sharing agreements, and effective compliance monitoring through workshops. 

3. Developing Core Model 

Developing a reliable core model is key to the success of the framework. This phase 

includes integrating and preprocessing data from multiple sources, engineering 

features, and selecting suitable models. These models may include machine learning 

algorithms, statistical techniques, or hybrid approaches to generate actionable insights 

for water management. Proper training, validation, and deployment of these models 

are required to ensure their effectiveness. 

Key Actions: 

● Integrate and preprocess data from diverse sources. 

● Perform feature engineering to enhance model accuracy. 

● Select the most appropriate models, including machine learning or hybrid 

approaches. 

● Train, validate, and deploy models to provide useful water management 

insights. 

Key Actions for Capacity Building: 

○ Train technical staff in data integration, feature engineering, and model 

development. 

○ Build expertise in validating and deploying machine learning, statistical, and 

hybrid models. 

Feature engineering and selecting high-quality data sources are critical to 

developing effective decision-support systems. This workshop focuses on these key 

aspects, ensuring that the data integrated into dashboards and early warning systems 

is accurate, relevant, and actionable. The results will be reported in the following 

section. 

4. Developing Decision-Support Systems (DSS) 

Decision-Support Systems (DSS) play a crucial role in converting data into actionable 

insights. This includes creating dashboards with visual representations such as maps, 

graphs, and real-time alerts. Additionally, implementing early warning systems for 

floods and droughts, as well as scenario modeling for resource allocation, will help 

stakeholders make informed decisions. 
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Key Actions: 

● Develop dashboards with visual elements such as maps and graphs. 

● Implement early warning systems for floods and droughts. 

● Use scenario modeling to simulate and analyze potential outcomes. 

● Optimize resource allocation tools for equitable and efficient water usage. 

Key Actions for Capacity Building: 

○ Train policymakers and water managers to use dashboards and DSS tools. 

○ Conduct scenario-planning workshops and build local communities's capacity 

to interpret and act on early warnings. 

5. Pilot Projects in Critical Regions 

Before scaling the framework across the economy, pilot projects should be 

implemented in high-risk regions. These projects will test DSS, collect real-time data, 

engage local communities, and evaluate outcomes. The insights from these pilot 

projects will guide broader scalability efforts. 

Key Actions: 

● Identify high-risk regions for initial pilot implementations. 

● Deploy DSS tools to these regions for real-world testing. 

● Collect real-time data and involve local communities in the process. 

● Evaluate project outcomes to refine the framework for larger-scale 

deployment. 

Key Actions for Capacity Building: 

○ Train stakeholders in data collection, monitoring, and DSS tools. 

○ Empower communities to engage in local decision making and provide 

feedback to improve pilot plans. 

6. Scaling Up Economy-Wide 

After successful pilot projects, the framework can be expanded across the economy. 

A domestic rollout plan should be developed, incorporating lessons learned from the 

pilots. Regional hubs should be established for data collection and decision-making. 

Additionally, aligning water management strategies with broader domestic policies and 

development goals will ensure a coordinated approach to long-term sustainability. 

Key Actions: 

● Develop a rollout plan based on pilot project outcomes. 

● Establish regional hubs for data collection and decision-making. 
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● Align water management strategies with domestic policies and sustainable 

development goals. 

Key Actions for Capacity Building: 

○ Train regional staff in data systems and DSS tools. 

○ Host domestic workshops to share best practices and lessons from pilot 

plans. 

○ Expand capacity through train-the-trainer programs to scale up efforts. 

7. Monitoring, Evaluating, Adapting, and Expanding the System 

To ensure continuous improvement, the framework requires ongoing monitoring and 

evaluation. Defining key performance indicators (KPIs) such as water efficiency and 

disaster reduction helps track progress. Regular assessments and refinements based 

on collected data ensure that strategies remain effective. Incorporating stakeholder 

feedback will further enhance the framework’s adaptability. 

Key Actions: 

● Define KPIs to measure success (e.g., water efficiency and disaster 

reduction). 

● Conduct regular assessments and refine strategies based on findings. 

● Incorporate feedback from stakeholders to improve the framework 

continuously. 

Key Actions for Capacity Building: 

○ Train stakeholders in monitoring and evaluation methods, focusing on tracking 

KPIs. 

○ Build capacity to assess water management impacts and iteratively refine 

frameworks using feedback. 

By following this structured implementation guideline, economies can ensure a 

comprehensive, data-driven, and sustainable approach to water management. 

Furthermore, this guideline can also be applied to other environmental related 

problems. The Framework Implementation similarly begins with identifying the key 

issues of each economy, determining which datasets and variable fields are necessary 

for building a model, building a decision-support system, scaling it up, and monitoring 

as well as evaluating the model. These steps lead to enhancing resilience against 

water-related challenges and other environmental related issues in the economies. 
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Understanding the Similarities and Differences between  

Tropical and Midlatitude Meteorology for Framework Development 

The Importance of Feature Engineering in Developing Localized Rainfall 

Prediction Models 

A fundamental component of the framework’s success stems from building a robust 

core model, which relies heavily on feature engineering. The first step in this process 

is selecting appropriate variables for rainfall prediction models. These variables 

originate from diverse data sources, including observational data, remote sensing 

data, reanalysis datasets, and model outputs. The necessity of careful feature 

engineering and model selection arises because existing model outputs do not always 

yield accurate rainfall predictions for localized regions. Many global models operate at 

a relatively coarse resolution (2–5 km), which is insufficient to resolve the intricate 

atmospheric processes necessary for cloud formation which is an essential precursor 

to rainfall. 

While increasing the resolution of these models would improve accuracy, doing so 

requires extensive computational resources, posing a significant challenge for 

developing economies. Furthermore, many of the parameterization schemes used in 

existing models were developed in midlatitude regions, where atmospheric dynamics 

differ significantly from those in tropical climates. These parameterizations attempt to 

estimate small-scale atmospheric processes using mathematical equations, but their 

effectiveness varies across different climatic zones. Additionally, each economy or 

region presents unique challenges due to variations in land use, topography, and 

localized weather patterns. Therefore, it is crucial to develop a localized model that 

utilizes region-specific data and is efficient in both computational resources and 

processing time. 

To improve the accuracy of localized rainfall predictions, it is essential to understand 

the similarities and differences in meteorological processes across different climate 

zones. One key similarity between tropical and midlatitude meteorology is that cloud 

formation is fundamental to rainfall prediction. Clouds are associated with updrafts and 

condensation, and their presence can serve as a critical predictor for rainfall. 

Furthermore, there are multiple types of clouds, including warm clouds, ice clouds, 

and mixed-phase clouds, each playing a unique role in atmospheric processes. Warm 

clouds, typically found at altitudes of 2–3 km, consist of condensed water droplets that 

reflect sunlight but produce minimal precipitation. Ice clouds, located in the upper 

troposphere typically 10–15 km above the surface, influence the atmospheric radiation 

budget and can impact convective cloud formation over time. Finally, mixed-phase 

clouds, which contain both liquid droplets and ice particles, are often associated with 

deep convection and complex interactions among hydrometeors. 

Despite these universal cloud processes, significant differences exist between tropical 

and midlatitude meteorology. One key distinction lies in the thermodynamics and 
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large-scale atmospheric environment influencing cloud development. Cloud 

processes generally occur over short timescales, on the order of days, while seasonal 

rainfall prediction operates on longer timescales. However, understanding the 

dynamics and thermodynamics of mixed-phase clouds remains crucial for selecting 

the most relevant variables for accurate seasonal predictions. By incorporating these 

considerations into the feature engineering process, localized models can better 

capture atmospheric conditions unique to each region, ultimately improving the 

accuracy and efficiency of rainfall forecasts. 

Distinguishing Tropical and Midlatitude Meteorology for Improved Rainfall 

Prediction 

A fundamental component of the success in a core model development is the 

recognition of the distinct characteristics of the region for which to build the model. In 

other words, distinguishing the differences between tropical and midlatitude 

meteorology is crucial in shaping how rainfall prediction models should be developed 

and refined, as the governing atmospheric processes vary significantly between the 

two zones. Understanding these distinctions is essential for designing accurate, 

region-specific models that enhance the reliability of precipitation forecasts.   

The midlatitude, or the area poleward of 30°N/S, is characterized by a strong 

horizontal temperature gradient, with warmer air near the equator and colder air near 

the poles. This temperature contrast gives rise to jet streams, the narrow bands of 

strong winds in the upper atmosphere (around 300 hPa) that drive large-scale weather 

systems. Because midlatitude weather is predominantly influenced by synoptic-scale 

processes, numerical weather prediction models tend to perform well in these regions. 

The predictability of midlatitude weather arises from the well-defined frontal systems 

and large-scale dynamic forcing mechanisms that govern atmospheric circulation, 

making standard numerical and statistical modeling approaches relatively effective.   

In contrast, the tropics, located equatorward of 30°N/S, operates under vastly different 

conditions. The tropics exhibits a weak temperature gradient (WTG) due to more 

uniform solar heating, meaning that temperature contrasts are not the primary driver 

of weather systems. Instead, tropical weather is governed by continuous interactions 

between clouds, moisture availability, and large-scale circulations, leading to complex 

feedback mechanisms that make rainfall prediction significantly more challenging. The 

role of cloud microphysics is much more pronounced in tropical systems, requiring 

different modeling approaches than those used in midlatitude regions.  

Many variables that serve as reliable precipitation proxies in the midlatitudes, such as 

Convective Available Potential Energy (CAPE), are far less useful in the tropics. 

Instead, tropical rainfall is more strongly correlated with relative humidity (RH) and 

moisture convergence, necessitating an adjustment in the choice of predictive 

variables for ML-based models. The differences between tropical and midlatitude 

meteorology are summarized in Table 1.  
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Feature Midlatitude  Tropical  

Location Poleward of 30°N/S Equatorward of 30°N/S 

Temperature Gradient Strong horizontal gradient 
(warmer near the equator, 
colder near the poles) 

Weak temperature gradient 
(WTG) due to uniform solar 
heating 

Dominant Weather 
Drivers 

Jet streams drive large-
scale weather systems 

Continuous interactions 
between clouds, 
thermodynamics, and 
circulations 

Predictability More predictable due to 
synoptic-scale processes 

Less predictable due to 
complex feedback 
mechanisms 

Rainfall Modeling - Traditional numerical 
models perform well; 
- Higher resolution is 
better; 
- Alternative approaches 
such as ML-based models 
are helpful and most 
development is for this 
region 

- Requires higher 
resolution; 
- Requires developments 
of dynamical, 
thermodynamic and cloud 
microphysics schemes 
targeted to the region;  
- Alternative approaches 
such as ML-based models 
are helpful but localized 
development is required  

Table 1: Key differences between tropical and midlatitude meteorology that are 

important for rainfall prediction 

Understanding these differences is crucial for developing accurate models. Many 

variables that serve as strong proxies for precipitation in midlatitude regions, such as 

Convective Available Potential Energy (CAPE), are not reliable in the tropics. Instead, 

relative humidity (RH) and moisture convergence are stronger indicators of 

precipitation probability in tropical climates. The workshop emphasized the need for 

incorporating region-specific meteorological variables into ML-based post-processing 

models to improve rainfall prediction accuracy. 

Mathematically, CAPE is given by: 

𝐶𝐴𝑃𝐸 =  ∫ 𝑔
𝑇𝑝𝑎𝑟𝑐𝑒𝑙 − 𝑇𝑒𝑛𝑣

𝑇𝑒𝑛𝑣
𝑑𝑧

𝐸𝐿

𝐿𝐹𝐶

 

where LFC is the level of free convection, EL is the equilibrium level, g is gravitational 

acceleration, Tparcel is the temperature of the air parcel, and Tenv is the environmental 
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temperature. While this is a strong predictor in midlatitude systems, tropical convection 

is more influenced by moisture availability and entrainment. 

In other words, another key takeaway is the role of buoyancy and dilution in cloud 

formation. In midlatitude systems, buoyancy largely determines whether convection 

occurs, making CAPE a useful predictive variable. However, in tropical systems, 

dilution of clouds, or the entrainment, is equally important, requiring additional 

considerations such as entraining CAPE and mid-tropospheric humidity levels. The 

implication of this finding is that tropical rainfall models should incorporate parameters 

that reflect these interactions rather than relying solely on energy-based predictors. 

A simplified equation for the “actual buoyancy” responsible for convective systems in 

the tropical atmosphere atmosphere can be described as: 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 =  𝑈𝑛𝑑𝑖𝑙𝑢𝑡𝑒𝑑 𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 −  𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡. 

The undiluted buoyancy is a proxy for CAPE. It is proportional to the moist static 

energy (MSE) at the surface minus the saturated MSE in the mid-troposphere: 

𝑈𝑛𝑑𝑖𝑙𝑢𝑡𝑒𝑑 𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 ∝  𝑀𝑆𝐸𝑠𝑓𝑐 − 𝑠𝑎𝑡𝑀𝑆𝐸𝑚𝑖𝑑−𝑡𝑟𝑜𝑝 

Moist static energy is a combination of the potential energy, heat, and moisture content 

of the air at a level of interest. Mathematically, it can be written as: 

𝑀𝑆𝐸 = 𝑔𝑧 + 𝐶𝑝 𝑇 +   𝐿𝑣 𝑞 

where z is the geopotential height above sea level, Cp is the specific heat at constant 

pressure, T is the absolute air temperature, Lv is the latent heat of vaporization, and q 

is water vapor specific humidity. To compute the saturated MSE, the water vapor 

specific humidity is simply replaced by the saturated water vapor specific humidity, 

which expresses how much water vapor the air would have under saturation, a 

quantity depending on the temperature. Simply put together,  

𝑈𝑛𝑑𝑖𝑙𝑢𝑡𝑒𝑑 𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 

∝  𝐶𝑝(𝑇𝑠𝑓𝑐 − 𝑇500ℎ𝑃𝑎) + 𝐿𝑣 (𝑞𝑠𝑓𝑐 − 𝑞𝑠𝑎𝑡(𝑇500ℎ𝑃𝑎) − 𝑔𝑧500ℎ𝑃𝑎 

where the subscript sfc denotes the near-surface air, 500 hPa is a representative level 

of the mid-troposphere, roughly 5 km above the surface.  

The air will rise when the undiluted buoyancy is positive. To satisfy this condition often 

requires the following: 

(1) the surface is warmer than the mid-troposphere,  

(2) the surface is moister than the saturated mid-troposphere, and 

https://en.wikipedia.org/wiki/Geopotential_height
https://en.wikipedia.org/wiki/Thermodynamic_temperature
https://en.wikipedia.org/wiki/Specific_humidity
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(3) the sum of the two quantities above exceeds the potential energy of the air 

in the mid-troposphere.  

In the midlatitude, these three terms are generally sufficient to cause positive undiluted 

buoyancy and hence convection. However, the entrainment, or the dilution, is also 

very important in the tropical atmosphere. Excessive dilution of the buoyant updrafts 

can simply “kill” the clouds, leading to an environment with high CAPE but no rain as 

in the heatwave. 

The entrainment is inversely proportional to relative humidity: 

𝑈𝑛𝑑𝑖𝑙𝑢𝑡𝑒𝑑 𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 ∝  1 − 𝑅𝐻 

where RH is relative humidity, a measure of how much water vapor is present 

compared to the maximum possible amount. 

Research has shown that in the deep tropics, precipitation is more directly related to 

RH rather than CAPE (Bretherton et al., 2004). Furthermore, CAPE itself is inversely 

proportional to RH (Raymond et al., 2015), indicating that traditional CAPE-based 

approaches to predicting rainfall may be ineffective in tropical regions. Instead, an 

entraining CAPE formulation should be considered: 

𝐸𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐶𝐴𝑃𝐸 =  𝐶𝐴𝑃𝐸 −  𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 

This highlights the importance of both the vertical temperature gradient and the mid-

tropospheric humidity for effective cloud and rain formation. 

Additionally, in tropical meteorology, weak temperature gradients (WTG) play a crucial 

role. Unlike in the midlatitudes, where strong temperature contrasts drive weather 

systems, the tropics experiences a more uniform temperature distribution due to weak 

Coriolis force. Gravity waves redistribute solar heating, leading to overturning 

circulations that cause air to rise, condense, and form clouds, as shown in Figure 3. 
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Figure 3: A schematic showing the relationship between a convective cloud, 

an overturning circulation (dashed blue arrows) or the air movement, and the 

heat generation and dissipation (red arrows). 

The column moisture budget equation describes how moisture changes in a vertical 

atmospheric column: 

〈
𝜕𝑞

𝜕𝑡
〉+〈𝑉 ⋅ 𝛻ℎ𝑞〉+〈𝜔 ⋅

𝜕𝑞

𝜕𝑝
〉 = 𝐸 − 𝑃 

where: 

● 𝑞 is specific humidity, 

● 𝑉 is horizontal wind (with zonal and meridional components ), 

● 𝜔 is vertical pressure velocity, 

● 𝐸 is evaporation, 

● 𝑃 is precipitation, 

● 𝛻ℎ denotes the horizontal gradient, 

● 𝑡 and 𝑝 represent time and pressure, respectively, and 

● 〈    〉 represents the vertical integration over the atmospheric column. 

This equation highlights that local precipitation results from either local evaporation or 

the horizontal convergence of moisture within the atmospheric column. In general, 

increased horizontal moisture convergence leads to enhanced precipitation. Moisture 

advection from wetter to drier regions also contributes to rainfall probability. In the 

tropics, equatorial waves play a significant role in transporting large-scale moisture 
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(Mayta and Adames-Coralliza, 2024), alongside other large-scale circulations such as 

the El Niño-Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and 

the Indian Ocean Dipole (IOD). Given the critical influence of these processes on 

tropical precipitation, incorporating total moisture flux convergence or key components 

of the associated moisture fluxes into predictive models can significantly improve 

rainfall forecasting in tropical climates. 
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Observational Data and Model Outputs for Core Model Development  

A successful core model for rainfall prediction and water management requires an 

understanding of the region’s specific meteorological characteristics and the use of 

accurate, comprehensive data. Various data sources are crucial for model 

development, including observational data, remote sensing products, reanalysis 

datasets, and high-resolution model outputs. 

Observational Data 

 

Observational data provide direct measurements from weather stations, river gauges, 

and ground-based radar systems. These in-situ measurements are the most accurate 

and accessible forms of data, often serving as a reference for evaluating satellite-

based data and model outputs. While relatively inexpensive, they require regular 

maintenance, and data disturbances or shortages can impact model training. Installing 

such measurement tools in remote or mountainous regions is particularly beneficial 

for topographical rainfall monitoring and prediction.  

 

Additionally, vertical profile data from radiosondes or weather balloons offer valuable 

atmospheric soundings, measuring temperature, humidity, and wind at different 

altitudes. These are essential for calculating moist static energy (MSE) and relative 

humidity (RH), both fundamental to atmospheric buoyancy. Although radiosonde data 

collection is costlier than in-situ measurements, launching balloons multiple times per 

day is crucial for capturing diurnal atmospheric variability. 

 

Remote sensing data 

Remote sensing data, which can be ground- or satellite-based, provide broader 

coverage than in-situ measurements but require calibration using station-based or 

radiosonde data. This calibration process often involves radiative transfer codes, 

which must be obtained from data providers when necessary. Remote sensing 

techniques are classified as passive or active. Passive remote sensing relies on 

naturally occurring energy, such as sunlight, to record reflected radiation. This 

category includes satellite imagery, infrared sensors, and water vapor sensors. In 

contrast, active remote sensing systems generate their own energy source to 

illuminate a target and measure the reflected radiation. Examples include lidars, 

radars, and Doppler radars. 

Lidar, which stands for ‘Light Detection and Ranging,’ is a remote sensing technique 

that employs laser pulses to measure atmospheric properties such as wind speed, 

direction, and aerosol profiles. These data are essential for weather forecasting, 

climate modeling, and air quality management. Lidar works by emitting laser pulses 

and analyzing the scattered or absorbed light to gather information about the 

atmosphere. It measures aerosol profiles to assess the vertical distribution of dust, 
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smoke, and pollutants, which are crucial for understanding air quality and climate. 

Doppler lidar utilizes the Doppler effect to measure wind speed and direction, while 

Raman lidar can provide temperature and water vapor profiles. Lidar is also valuable 

for studying cloud height, thickness, and composition. An example of an open lidar 

dataset is the U.S. National Aeronautics and Space Administration’s (NASA) 

MPLNET, a federated network of Micro-Pulse Lidar (MPL) systems designed to 

measure aerosol and cloud vertical structure, and boundary layer heights. The sensors 

are located at various locations globally, mostly through collaborations with local 

research institutes who share the data through the MPL network system. 

Radar, which stands for ‘Radio Detection And Ranging,’ is another form of active 

remote sensing. Radar systems come in various types based on wavelength. 

Millimeter-wave (mmWave) radar, with a wavelength of 1 to 10 mm, is highly sensitive 

to small particles like cloud droplets, making it useful for detecting fog and studying 

cloud properties. However, its short wavelengths result in strong attenuation by rain, 

limiting its range. On the other hand, centimeter-wave (cmWave) radar, with 

wavelengths of 5 to 10 cm, penetrates precipitation better, making it ideal for storm 

warnings and precipitation studies. S-band radars (10 cm) are particularly effective for 

storm tracking, whereas C-band radars (5 cm) are useful for precipitation monitoring 

but can experience attenuation in heavy rain.  

Doppler radar, a specialized type, measures the velocity and direction of precipitation 

particles using the Doppler effect. It provides critical data on storm structure, rainfall 

intensity, and severe weather detection. Additionally, dual-polarization radar enhances 

precipitation classification by distinguishing between rain, hail, snow, and ice pellets. 

This technology transmits and receives signals in both horizontal and vertical 

polarization, offering more detailed insights into precipitation characteristics. 

Satellite remote sensing datasets provide another valuable source of atmospheric 

data. The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement 

(IMERG) algorithm, developed by NASA, combines satellite observations and ground-

based data to estimate precipitation over the Earth's surface at a high temporal 

resolution. Similarly, the Clouds and the Earth's Radiant Energy System (CERES) 

dataset measures Earth's radiation budget and cloud properties, which influence 

precipitation patterns. Advances in remote sensing technology now allow the 

measurement of atmospheric states from space, reducing reliance on ground-based 

observations.  

Traditionally, vertical velocity measurements required ground-based instruments such 

as Doppler radar or mmWave radar. However, a recent study showed that satellite-

based techniques can now enable the measurement of clear-air vertical motions 

(Poujol and Bony, 2024), though further research is needed to assess their reliability 

for cloud-scale processes. 
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Reanalysis Data 

 

Reanalysis datasets, such as the European Centre for Medium-Range Weather 

Forecasts (ECMWF) Atmospheric Reanalysis version 5 (ERA5), the National Centers 

for Environmental Prediction (NCEP), the Japanese 55-year Reanalysis (JRA-55), and 

the Modern-Era Retrospective analysis for Research and Applications (MERRA), 

provide long-term atmospheric data by combining historical observations with model 

simulations. They have great spatial and temporal coverage, but may lack the 

resolution needed for complicated topography. These datasets are invaluable for 

climate trend analysis, historical evaluations, and machine learning-based predictive 

models. However, their accuracy depends on the availability and quality of input 

observations, underscoring the importance of improving ground-based data collection. 

High resolution models 

High-resolution weather models, though computationally expensive, provide detailed 

forecasts used by meteorological services such as ECMWF and the Icosahedral 

Nonhydrostatic (ICON) model. Some high-resolution model outputs are publicly 

available in near real-time, but accessing and storing them requires significant 

resources.  

 

Projects like the Dynamics of the Atmospheric General Circulation Modeled on Non-

hydrostatic Domains (DYAMOND) offer high-resolution simulations validated against 

observational data (Stevens et al., 2019). But because of the computational expenses, 

they are run only for 40-day (1 August–10 September 2016). Nonetheless, they offer 

very high resolution outputs that allow one to understand atmospheric processes 

important for rainfall formation and thus are very useful for research purposes. 

Take-home points: 

● One of the key discussions in the workshop was the importance of calibrating 

satellite-derived data with in-situ measurements. Proper calibration ensures 

that satellite data serve as a consistent and reliable source for long-term 

monitoring and predictive modeling. 

● Maintaining a dense and well-calibrated network of in-situ stations is essential 

for accurate modeling, particularly in complex terrains such as mountainous 

regions. The integration of radar, lidar, and radiosonde data further enhances 

rainfall observation and prediction models.  

● Observed data can also be used in data assimilation, a technique that merges 

observational data with numerical model predictions to improve weather 

forecasting accuracy. 

● While models are powerful tools for understanding and predicting atmospheric 

processes, they are not infallible. Proper interpretation requires a strong 
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foundation in meteorology and access to high-quality observational data for 

verification and refinement. 

Ultimately, the effectiveness of predictive models hinges on integrating diverse data 

sources, improving ground-based observations, and advancing computational 

techniques. The more comprehensive and region-specific the data, the better the 

model performance, leading to improved decision-making in water resource 

management and disaster preparedness. 
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Use Cases of the Framework: Feature Engineering in Different Economies 

Feature engineering for machine learning (ML) models varies by region due to 

differences in climate systems, geography, and atmospheric dynamics. One key 

consideration agreed upon by most economies is that the time frame of prediction 

plays a crucial role in selecting the appropriate variables. As highlighted by an expert 

speaker, time-dependent variables influence both short-term and long-term weather 

forecasting. 

In general: 

● Temperature fluctuations are critical for large-scale and fast-moving systems, 

such as tropical cyclones (hurricanes, typhoons, and depressions), El Niño-

Southern Oscillation (ENSO), and the Indian Ocean Dipole (IOD). 

● Water vapor fluctuations are more relevant for intermediate-scale and slow-

moving weather systems. 

Below are examples of feature engineering tailored to specific regions, as discussed 

by expert speakers and participants from each economy: 

United States (USA) 

Feature engineering in the USA incorporates a range of atmospheric and 

meteorological variables, particularly for severe weather events such as convective 

storms, hurricanes, and seasonal precipitation anomalies. 

● Convective Available Potential Energy (CAPE) 

● Humidity 

● Vertical velocity 

● Cloud-top height (or pressure) 

● Cloud optical thickness 

● Past precipitation 

These variables help in predicting thunderstorms, tornadoes, and large-scale climate 

patterns that impact different parts of the economy. 

China; Hong Kong, China; and Korea (East Asia / Mid-Latitude Regions) 

These economies experience a mix of monsoon systems, typhoons, and large-scale 

atmospheric interactions. Baroclinicity, or the presence of strong temperature 

gradients, plays a key role in shaping weather patterns. Feature engineering includes: 

● Sea surface temperature 

● Air temperature 

● Pressure 

● Humidity 
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● Geopotential height 

● 850 hPa wind 

● Soil moisture 

● Climate indices such as ENSO, IOD, and MJO (Madden-Julian Oscillation) 

● Other factors influencing monsoon and typhoon activity 

These features allow models to capture both short-term atmospheric variations and 

long-term climate influences affecting weather predictability. 

The Philippines and Indonesia (Tropical Islands) 

As tropical island economies, the Philippines and Indonesia face challenges related to 

extreme rainfall, tropical cyclones, and seasonal weather variability. Feature 

engineering focuses on ocean-atmosphere interactions and convective processes. 

● Sea surface temperature 

● Upper air temperature 

● Convective Available Potential Energy (CAPE) 

● Low-level humidity 

● Mid-level humidity 

● Wind profiles throughout the troposphere 

These variables are particularly useful for modeling tropical cyclone intensity, 

monsoon rains, and localized convective storms. One prominent difference between 

the Philippines and Indonesia is the season of rainfall as they are located in different 

hemispheres. While the variables for feature engineering may be similar for both 

economies, separate models are required to train the data for rainfall prediction. 

Viet Nam (South China Sea Coastal Region) 

Viet Nam’s climate is influenced by monsoon activity, ENSO, and tropical cyclones in 

the South China Sea. Feature engineering in this region integrates multiple factors 

affecting seasonal and extreme weather events. 

● Sea surface temperature 

● Upper air temperature 

● Humidity 

● Wind 

● ENSO Index 

● Monsoon index 

These features help capture the interactions between large-scale climate oscillations 

and regional weather patterns. 
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Chile (Mountainous, Mid-Latitude Climate) 

Chile presents a unique challenge for numerical weather modeling due to its long and 

narrow geopolitical boundary stretching north-south across the South American 

continent. This geographical constraint requires numerical simulations to be 

performed over a long and narrow domain. Additionally, Chile’s complex topography, 

with the Andes mountains to the east and the Pacific Ocean to the west, makes it 

challenging to develop high-resolution weather models that accurately capture the 

interaction between atmospheric processes and terrain-driven weather patterns. 

To account for these complexities, ML-based models are helpful for Chile. For this 

climate pattern, feature engineering in Chile relies on: 

● Total precipitable water 

● Horizontal wind 

● Vertical wind 

● High-resolution topography (mountainous terrain influence) 

These variables help improve the accuracy of precipitation forecasts, particularly for 

orographic rainfall and extreme weather events like atmospheric rivers, which are 

common in the region. 

Thailand (Tropical Monsoon Climate) 

Thailand experiences diverse weather patterns influenced by monsoon circulations, 

topography, and large-scale climate indices. Feature engineering includes a mix of 

atmospheric and surface-related variables. 

● Sea level pressure 

● Temperature 

● Humidity 

● Wind 

● Topography 

● Soil moisture and runoff 

● ENSO index 

These variables are critical for forecasting seasonal flooding, droughts, and monsoon-

driven rainfall variability.  
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Suggestions for the Framework  

1. Validation Using Precipitation Anomalies 

When developing a machine learning (ML) model for precipitation forecasting, it is 

essential to validate the model using precipitation anomalies rather than absolute 

precipitation values. Precipitation anomalies provide a measure of deviations from the 

long-term average, allowing for a clearer assessment of how well the model captures 

variability and extreme weather patterns. By focusing on anomalies, the model 

evaluation becomes less sensitive to biases in absolute precipitation amounts and 

better suited for detecting seasonal and interannual changes. Additionally, using 

anomaly-based validation helps improve model generalization across different regions 

and time periods, making it more robust for climate applications. 

2. Importance of Climate Zones in ML Model Development 

Climate zones significantly impact the development and performance of ML models 

for precipitation. Different geographic regions have distinct climate characteristics that 

pose unique challenges for model training and validation. For example, Chile's 

elongated north-south orientation, combined with its mountainous terrain, results in 

sharp climate gradients, from arid conditions in the north to temperate and wet 

conditions in the south. This variability requires an ML model that can account for both 

local and large-scale atmospheric drivers of precipitation. Similarly, Thailand’s diverse 

geography, with mountainous terrain in the north, a flat plateau in the central region, 

and a coastal peninsula in the south, necessitates an ML model that can adapt to 

multiple precipitation regimes. Developing region-specific models or incorporating 

climate zone classification into ML training can improve prediction accuracy across 

different geographic settings. 

3. Equatorial Waves and Seasonal Precipitation Forecasting 

Equatorial waves play a crucial role in seasonal precipitation forecasting, particularly 

in tropical regions. These large-scale atmospheric waves influence moisture transport, 

convective activity, and storm development. Hovmöller diagrams, which visualize the 

propagation of equatorial waves over time, are particularly useful for tracking their 

impact on precipitation. For example, analysis of the Equatorial Rossby wave during 

the workshop (Feb 24–25, 2025) revealed that it coincided with high precipitable water 

in the atmosphere (PWAT), directly contributing to a rainfall event in Bangkok, 

Thailand. By integrating equatorial wave dynamics into ML models, it is possible to 

improve seasonal forecasts by capturing these large-scale atmospheric interactions. 
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4. Expanding Ground-Based Observational Coverage 

Higher coverage and resolution of ground-based observational data are essential for 

improving precipitation models. While sophisticated weather stations provide high-

quality data, even inexpensive instruments can contribute valuable measurements, 

particularly in regions with sparse observational networks. Indonesia’s use of ATHUS 

and ModATHUS rain gauges serves as a strong example of how cost-effective 

solutions can enhance data availability. A well-distributed observational network helps 

with model calibration, improves data assimilation in numerical weather prediction, and 

allows for better validation of satellite and ML-based estimates. Expanding 

observational networks should be a priority, particularly in regions with complex 

topography or variable rainfall patterns. 
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5. Community Engagement in Disaster Preparedness 

Community engagement is a critical component of effective weather and climate 

modeling, particularly in relation to disaster prevention and response. Engaging 

communities in early warning systems, disaster preparedness, and map literacy 

ensures that scientific advancements translate into real-world benefits. Local 

stakeholders must be involved in developing and disseminating forecast products, 

making them accessible and actionable for decision-making. Training on how to 

interpret weather maps and hazard forecasts can empower communities to take 

proactive measures, reducing the impact of extreme weather events. Successful 

community engagement requires collaboration between scientists, policymakers, and 

local leaders to tailor solutions to specific regional needs. 

6. Role of Radiative Heating in Cloud Formation 

Radiative heating is a fundamental process in cloud formation, particularly in the 

tropics. Cloud radiative heating leads to moisture convergence, where heating inside 

convective clouds causes air to rise. Due to mass continuity, this results in 

convergence at the surface and divergence at higher altitudes, reinforcing convective 

circulation. In humid tropical environments, such overturning circulations sustain cloud 

development, leading to sustained precipitation. ML models aiming to predict tropical 

rainfall should incorporate radiative heating effects to better simulate convective 

processes and their impact on moisture distribution. 

7. Surface Energy Flux and Land-Ocean Differences 

Surface energy flux plays a crucial role in shaping weather patterns and precipitation, 

and modern models resolve these processes with increasing accuracy. One of the key 

distinctions between land and ocean is the role of the boundary layer, the lowest few 

kilometers of the atmosphere. Over land, the boundary layer exhibits strong diurnal 

variation, driven by solar heating during the day and cooling at night. This variability 

influences the depth of convective clouds and the intensity of rainfall. In contrast, 

oceanic regions experience weaker diurnal variations because of the ocean’s thermal 

inertia, leading to more continuous but less intense convection. ML models should 

account for these land-ocean differences to improve precipitation predictions, 

particularly in coastal regions where interactions between land and sea drive complex 

weather patterns. 

8. Aerosols and Their Influence on Precipitation 

Aerosols influence precipitation by acting as cloud condensation nuclei, facilitating the 

transition from water vapor to liquid droplets. However, their impact is secondary 

compared to other atmospheric factors such as moisture availability and large-scale 

dynamics. Small aerosol particles can enhance cloud formation but may suppress 

rainfall by preventing droplet growth into raindrops. Conversely, larger particles can 
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lead to more efficient rainfall production by promoting coalescence. Notably, fine 

particulate matter (PM2.5) is too small to effectively seed rain clouds, meaning its 

presence does not directly lead to increased precipitation. While aerosols are an 

important consideration, ML models should prioritize moisture transport, radiative 

heating, and surface energy fluxes as primary drivers of precipitation variability. 
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Summary 

 

This report outlines a comprehensive Framework for Enhancing Sustainable and 

Resilient Water Management across APEC economies, emphasizing the critical role 

of open environmental data and region-specific adaptations. The Framework provides 

a structured, scalable approach designed to foster sustainability and resilience in 

water resource management amidst challenges such as climate change, rapid 

urbanization, and increasing water demand. It comprises four key components 

including Data Collection and Integration, Data Processing and Analysis, Decision 

Support Systems (DSS), and Capacity Building and Stakeholder Engagement each 

supported by essential enabling factors, including robust governance structures, 

clearly defined policies, comprehensive monitoring and evaluation systems, and 

strategic use of Key Performance Indicators (KPIs). 

 

To implement the framework, a detailed Implementation Guideline has been 

developed, providing a step-by-step roadmap for economies to effectively assess their 

unique water challenges, build robust data infrastructures, develop reliable predictive 

models, and establish decision-support tools tailored to their specific needs. This 

guideline emphasizes the importance of localized data infrastructure leveraging IoT, 

remote sensing, and machine learning technologies. It further advocates for pilot 

projects in high-risk regions, followed by a methodical scale-up strategy to ensure 

comprehensive domestic adoption. Continuous monitoring, evaluation, and 

stakeholder feedback mechanisms are embedded throughout the guidelines to 

facilitate adaptive management, enabling economies to iteratively refine and enhance 

their water management strategies. 

 

Within this strategic context, the two-day APEC Workshop conducted in Bangkok 

provided a collaborative platform for participants to explore and refine critical technical 

components essential to the Framework’s success, notably focusing on localized 

rainfall prediction through advanced feature engineering. Recognizing the unique 

meteorological characteristics of different APEC economies, discussions emphasized 

the importance of localized data collection and model customization to improve 

predictive accuracy. 

Building upon this foundation, two key themes guided the workshop: (1) feature 

engineering, where participants explored how meteorological differences between 

tropical and midlatitude regions influence rainfall prediction, and (2) the role of open 

environmental data, which supports the development and refinement of predictive 

models. Experts highlighted that regional meteorology must be well understood to 

ensure successful model development, as climate zones, topography, and 

atmospheric dynamics all play critical roles in precipitation forecasting. 

A major takeaway was the necessity of high-resolution, high-coverage 

observational data. While advanced remote sensing products and reanalysis 
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datasets are valuable, ground-based measurements remain crucial, particularly in 

complex terrains. Participants discussed cost-effective observational tools, such as 

the ATHUS and ModATHUS rain gauges used in Indonesia, and emphasized the 

importance of integrating radar, lidar, and radiosonde data to enhance model 

performance. 

The workshop also addressed regional challenges in numerical weather modeling. 

For example, Chile’s long and narrow geographical domain presents 

computational challenges for high-resolution simulations, while Thailand’s diverse 

landscape, from mountainous terrain to coastal regions, requires tailored approaches 

to capture localized weather patterns. Furthermore, discussions on equatorial waves, 

surface energy fluxes, and radiative heating highlighted their influence on seasonal 

precipitation patterns and their integration into ML models. 

By combining meteorological expertise with ML-driven post-processing 

techniques, the framework aims to provide real-time, data-informed insights for 

water resource management, disaster preparedness, and climate adaptation. The 

workshop reinforced that a one-size-fits-all approach is inadequate. Each economy 

must refine its models based on region-specific meteorological factors and 

observational capabilities. Future research should focus on improving feature 

selection techniques, expanding observational networks, and leveraging open 

environmental data to enhance the accuracy and reliability of predictive models.  
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Appendix:  

Open Environmental Data (OED) Sources for  

Rainfall Prediction and Water Management 

Data Source Type Description Region of 

Use 

URL 

European 

Centre for 

Medium-

Range 

Weather 

Forecasts 

(ECMWF) 

Open Data 

Model 

output 

Numerical weather 

prediction models with 

precipitation and 

atmospheric data 

Global https://www.ecmwf.i

nt/en/forecasts/data

set/open-data 

NOAA Global 

Forecast 

System (GFS) 

Model 

output 

Weather prediction model 

providing global 

atmospheric forecasts 

Global https://nomads.ncep

.noaa.gov/ 

Fifth 
generation of 

ECMWF 
Atmospheric 
Reanalysis 

(ERA5) 

Reanalysis High-resolution global 

climate data, including 

precipitation, temperature, 

and wind fields 

Global https://cds.climate.c

opernicus.eu/ 

Japanese 55-

year 

Reanalysis 

(JRA-55) 

Reanalysis Long-term atmospheric 

reanalysis dataset 

Global https://jra.kishou.go.

jp/JRA-

55/index_en.html 

Integrated 

Multi-satellitE 

Retrievals for 

GPM (IMERG) 

Remote 

Sensing 

High-resolution 

precipitation estimates from 

NASA’s GPM mission 

Global https://gpm.nasa.go

v/data/imerg 

APHRODITE 

Precipitation 

Dataset 

In-situ & 

Gridded 

Long-term, high-resolution 

daily precipitation data 

based on rain gauge 

observations 

Asia http://www.chikyu.a

c.jp/precip/ 
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Data Source Type Description Region of 

Use 

URL 

North Carolina 

Institute for 

Climate 

Studies 

(NCICS) 

Tropical 

Monitoring 

Remote 

Sensing & 

Reanalysis 

Monitoring equatorial 

waves for seasonal rainfall 

forecasting 

Global – 

Focused 

on the 

tropics 

https://ncics.org/port

folio/monitor/mjo/ 

Climate 

Hazards 

Group 

InfraRed 

Precipitation 

with Station 

Data 

(CHIRPS) 

Remote 

Sensing & 

In-situ 

Precipitation dataset 

combining satellite and 

station data 

Global https://www.chc.ucs

b.edu/data/chirps 

Clouds and 
the Earth's 

Radiant 
Energy 
System 

(CERES) Data 
Products 

Remote 
sensing 

Satellite-based 
observations of Earth's 

radiation budget and cloud 
properties, including hourly, 

daily, and monthly 
averages of radiative fluxes 

and cloud properties at 
various spatial scales 

Global https://ceres.larc.na
sa.gov 

Coupled 
Model 

Intercomparis
on Project 
Phase 6 
(CMIP6) 

Model 
output 

The most recent global 
climate model outputs 

available (as of the date of 
the workshop);  

various variables including 
precipitation, temperature, 

humidity, wind, etc. 

Global https://pcmdi.llnl.go
v/CMIP6/ 

The World 
Climate 

Research 
Programme 

(WCRP) 
Coordinated 

Regional 
Climate 

Downscaling 

Model 
output 

High-resolution regional 
climate downscaling 

outputs from CMIP models 

Regional 
(multiple 
regions 

available) 

https://cordex.org/ 
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Data Source Type Description Region of 

Use 

URL 

Experiment 
(CORDEX) 

Centre for 
Environmental 
Data Analysis 

(CEDA) 

Data 
Repository 

Environmental data, 
including climate and 
weather observations 

Global https://www.ceda.ac
.uk 

DYnamics of 
the 

Atmospheric 
general 

circulation 
Modeled On 

Non-
hydrostatic 
Domains 

(DYAMOND) 

Model 
output 

Very high-resolution (storm-
resolving) global model 
outputs, available for 40 
days during the boreal 

summer and boreal winter; 
various variables including 
precipitation, temperature, 

humidity, wind, etc. 
 

Boreal summer: 1 August 
2016 - 10 September 2016 

 
Boreal winter: 20 January 

2020 - 1 March 2020 

Global https://easy.gems.d
krz.de/DYAMOND/i

ndex.html 

International 
Centre for 

Water Hazard 
and Risk 

Management 
(ICHARM) 

Hydrology 
& Climate 

Data 

Water-related disaster risk 
management and 

forecasting 

Asia-
Pacific 

https://www.pwri.go.
jp/icharm/special_to
pic/20211029_aoge

o_awci.html 
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Data Source Type Description Region of 

Use 

URL 

ATHUS and 

ModATHUS 

Rain Gauges 

In-situ 

Observatio

ns 

Low-cost rain gauge 

network for precipitation 

monitoring 

Indonesia No public URL 

Web-based 
Hydrological 
Assessment 

System 
(WHAS) 

Hydrology 
& Weather 
Observatio
nal Data 

Real-time hydrological and 
weather monitoring 

Indonesia https://www.whas.w
eb.id 

Flash Flood 
Warning 
System 
(FFWS) 

Hydrology 
& Flood 

Monitoring 

Global flood forecasting 
and early warning system 

Global https://wmo.int/medi
a/update/early-
warnings-all-

developments-
hydrology 

Center for 
Climate and 
Resilience 
Research 

Meteorological 
dataset 

(CR2MET) 

Observatio
nal data 

A high-resolution 
precipitation and 

temperature dataset for the 
period of 1960-2021 in 

continental Chile 

Chile https://zenodo.org/r
ecords/7529682 

Southeast 
Asia 

Limnology 
Network 

(SEALNET) 

Remote 
sensing 

data 

Collaboration platform for 
environmental and 

hydrological research 

Southeast 
Asia 

https://www.sealnetf
orum.org 
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