

Energy Working Group

April 2017

APEC Project: EWG 02 2015A

Produced by Prof XU Wei and Dr ZHANG Shicong China Academy of Building Research China Passive Building Alliance Tel: (86 10) 8427 0181 Fax: (86 10) 8428 3555 No. 30 Beisanhuandonglu, Chaoyang, Beijing, 100013, People's Republic of China

中國建筑 科学研究院建筑环境与节能研究院

For Asia-Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace Singapore 119616 Tel: (65) 68919 600 Fax: (65) 68919 690 Email: <u>info@apec.org</u> Website: www.apec.org

©2017 APEC Secretariat

APEC#217-RE-01.4 ISBN: 978-981-11-3511-8

Content

PREFACE	I
ACKNOWLEDGEMENT	III
Figures	VII
Tables	IX
CHAPTER 1 General Information	1
1.1 The APEC energy intensity goal	1
1.2 APEC high-level urbanizationError! Bookmark n	ot defined.
1.3 APEC Nearly/Net Zero Energy Building	2
1.3.1 Policies and program	2
1.3.2 Nearly/Net Zero Energy Building definition	6
1.3.3 APEC Nearly/Net Zero Energy Building program	12
CHAPTER 2 NZEB Best Practices Template Design	15
2.1 Key information analysis for NZEB best practice	15
2.2 Support materials for NZEB best practices template design	
2.3 The APEC NZEB Best Practices Information Collection Template	
2.4 The APEC NZEB best practices investigation and collection results	23
CHAPTER 3 General Information of NZEB Best Practices Investigation	
3.1 The growth trend of NZEB in APEC regions	25
3.2 Building type and scale	
3.3 Indoor environment quality (IEQ) in NZEB	
3.3.1 Indoor temperature	
3.3.2 Indoor relative humidity	
3.3.3 Indoor air quality	
3.4 Climate assessment	
3.5 Building energy consumption	
CHAPTER 4 Passive Approaches to NZEB	
4.1 Building envelope	
4.1.1 Walls and roofs	
4.1.2 Windows	
4.1.3 Air tightness	35
4.2 Passive strategy	
4.2.1 Passive heating	
4.2.2 Passive cooling	
4.2.4 Passive lighting	
CHAPTER 5 Active Approaches to NZEB	40
5.1 Heating and cooling source	
5.1.1 Boiler	40
5.1.2 Heat pump	
5.2 HVAC system	

APEC 100 Best H	Practice Analysis of Nearly/Net Zero Energy Building	Asia-Pacific Economic Cooperation
5.2.1	Radiant technology	44
5.2.2	Displacement ventilation	46
5.2.3	Mechanical Air heat recovery	47
5.3 Lightin	1g	
5.4 Advan	ced control	49
5.4.1	Energy system control	50
5.4.2	Lighting system control	49
CHAPTER 6	Renewable Applications in NZEB	51
6.1 Solar j	power	51
6.2 Solar t	hermal	55
6.3 Wind		57
6.4 Comb	ned heat and power	58
CHAPTER 7	Economic Analysis of NZEB	59
7.1 Financ	ial considerations	59
7.2 Incren	nental cost allocation	59
CHAPTER 8	Conculsions	61
References		63
Appendix I	100 NZEB Best Practices List	65
Appendix II	Figures of Best Practices	73
Appendix III	Selected Best Practices information template	83
Appendix IV	Meeting notes of 1st workshop (Montreal, Canada)	178
Appendix V	Meeting notes of 2 nd workshop (Taichung City, Chinese Taipei)	225

PREFACE

Energy use in buildings worldwide accounts for over 40% of primary energy use and 24% of greenhouse gas emissions. Simply increasing energy supply will not solve the current energy supply and security situation and associated environmental problems. Given the challenges related to climate change and resource shortages, making residential and non-residential buildings more energy and resource-efficient while maintaining thermal comfort and cost-effectiveness represents and enormous opportunity to save money and reduce pollution.

Accounting for around 60 percent of world energy demand, the APEC region is a net energy importer and its demand for energy is on the rise. Recently, some APEC developed economies set the goal to achieve Nearly /Net Zero Energy Building (NZEB) and already launched some research programs and accomplished successful demonstration projects. How to share the existing experiences and best practices of NZEB to promote this idea among APEC region is the main focus of this project which will benefit both the new building construct work and existing building retrofit work in both developed and developing economies.

This project was funded by the APEC-Energy Working Group: EWG 02 2015 - APEC Nearly /Net Zero Energy Building Best Practices and Energy Reduction Results Comparative Study, the APEC Expert Group on Energy Efficiency & Conservation managed the implementation of the project. The goal of this project is to carry out professional in depth comparative research with the detail information collected of best practice NZEB pilot buildings, to showcase how tremendous energy reduction could be achieved by integration design, advanced technology utilization and NZE oriented management & commissioning in buildings. The outcome of this project could be as a strong support for the APEC economies to promote NZEB in the future and also work as an important pillar for the existing APEC programs, which including APEC Energy Smart Communities Initiative (ESCI), APEC Smart Grids Initiative (ASGI) and APEC Low Carbon Model Town project (LCMT).

The project had accomplished:

(1) A comprehensive and systematic information collecting template that could cover necessary information of the NZEB best practice. The reference sources of the template includes IEA Joint SHC Task 40 program database, Nagoya City University, the Chinese MoHURD passive ultra-low energy consumption demonstrations investigation template, United States DOE NREL building database, ENOB energy-optimized construction database and the Construction 21 building database.

(2) Two successful workshops. Two NZEB pilot projects workshops were prepared in 2015 and 2016, 43 speakers and 165 participants attended the workshops. The summary of discussion on main challenges, threaten and risks during the design, construction and operation of Nearly/Net Zero Energy commercial building and residential building, experiences and suggestions of how to deal with those problems were shared.

(3) An extensive investigation and comparative study of different NZEB best practices which includes commercial building and residential building in all climate regions among APEC

economies were carried out and 100 NZEB best practices from 8 economies (Australia; Canada; People's Republic of China; Hong Kong, China; Japan; Republic of Korea; Chinese Taipei and United States) were collected.

(4) The growth trend of NZEB in APEC member economies was analyzed, the various indoor temperature and relative humidity settings show a great different comfort requirement among each economies. The passive strategy, active approaches and renewable energy system were studied. The increment cost of different type of NZEB projects and the corresponding incremental allocations were analyzed.

We believe that the successful NZEB projects will be a powerful way to promote NZEB in building sector in APEC area. This report will show APEC economies what is the technology roadmap of different type of building in various climate zones across the APEC region. Meanwhile, this report will also strongly support the Energy Working Group Strategic Pan 2014-2018: Promote Energy Efficiency and Sustainable Communities, APEC Member Economies are more reliant on sustainable energy sources and energy efficient technologies and practices that reduce their overall energy consumption. Advancing the application of demonstrated energy efficiency practices and technologies contribute to international efforts to reduce the adverse impacts of energy production and consumption, and improve the analytical, technical, operational and policy capacity for energy efficiency and conservation within APEC Member Economies.

ACKNOWLEDGEMENT

The final report could not have been accomplished without the contributions of all experts who attended and shared their valuable experiences in two workshops of the project, collected information of best practice during their busy daily work. The APEC-EGEEC economy delegates and nominated delegates in APEC economies participated the two workshops and shared their ideas during the Q&A session and the discussion session. NSERC Smart Net-zero Energy Buildings Strategic Research Network of Canada and Industrial Technology Research Institute of Chinese Taipei gave us strong support for hosting the 2 workshops in Montreal and Taichung. We would like to thank you all.

APEC Program Director Ms Penelope Howarth, Director Pan Huimin and Ms Yang Yang of National Energy Administration of China, EWG-EGEEC Chairman Dr Li Pengcheng, Director Zhu Li of APSEC, Director Kong Dongqing and Ms Wang Na of International Cooperation Office of China Academy of Building Research gave the project overseer lots of high level suggestions and comments during the implementation of the project, which strongly promoted the project and also made the accomplishment more concrete, here we would like to show our gratitude to you all.

PROJECT OVERSEER

Prof XU Wei		China Academy of Building Research.		
Dr	ZHANG Shicong	People's Republic of China		

ACKNOWLEDGEMENT TO THE SPEAKERS OF 2 WORKSHOPS

Alan Fung	Ryerson University. Canada
Andreas Athienitis	NSERC Smart Net-zero Energy Buildings Strategic Research Network Concordia Centre for Zero Energy Building Studies. Canada
Ann Edminster	Design AVEnues LLC. United States
Annamaria Buonomano	University of Naples Federico II. Italy
Bruno Lee	Concordia University. Canada
Carmela Cucuzzella	Concordia University. Canada
Caroline Hachem	University of Calgary. Canada
Christophe Ménézo	University of Savoy Mont-Blanc. France
Cynthia Cruikshank	Carleton University. Canada
Dongwoo Cho	Korea Institute of Civil Engineering and Building Technology
	Republic of Korea

Edward Mazria	Architecture 2030. United States
Esteban Zalamea	University of Bío Bío. Chile
Gyu young Yoon	Nagoya City University. Japan
Hamed Hakim	University of Florida. United States
Hideharu Niwa	Nikken Sekkei Research Institute. Japan
Hua Ge	Concordia University. Canada
Justin Tamasauskas	Natural Resources Canada. Canada
Li Huai	China Academy of Building Research. People's Republic of China
Liangzhu Wang	Concordia University. Canada
Lukas Swan	Dalhousie University. Canada
Margaret Kam	Zero Carbon Building Limited. Hong Kong, China
Michael Emmer	Roger Williams University. United States
Michael Jemtrud	McGill University. Canada
Miguel Aloysio Sattler	Federal University of Rio Grande do Sul. Brazil
Ming-Shan Jeng	Industrial Technology Research Institute. Chinese Taipei
Nils Larsson	International Initiative for Sustainable Built Environment. Canada
Paul Torcellini	National Renewable Energy Laboratory. United States
Railesha Tiwari	Virginia Polytechnic Institute and State University. United States
Scott Bucking	Carleton University. Canada
Sonja Winkelmann	Canadian Home Builders' Association. Canada
Soteris Kalogirou	Cyprus University of Technology. Cyprus
Steve Burroughs	University of Canberra. Australia
Suwon Song	Korea Institute of Civil Engineering and Building Technology Republic of Korea
Umberto Berardi	Ryerson University. Canada
Usha Iyer-Raniga	The Royal Melbourne Institute of Technology. Australia
Wei Feng	Lawrence Berkeley National Laboratory. United States
Wei Pan	University of Hong Kong. Hong Kong, China
William Braham	University of Pennsylvania. United States

ACKNOWLEDGEMENT TO CO-AUTHORS

Andreas Athienitis	NSERC Smart Net-zero Energy Buildings Strategic Research Network Concordia Centre for Zero Energy Building Studies. Canada
Bruno Lee	Concordia Centre for Zero Energy Building Studies. Canada
Chen Xi	China Academy of Building Research. People's Republic of China
Chen Yuxiang	University of Alberta, Canada
Dongwoo Cho	Korea Institute of Civil Engineering and Building Technology Republic of Korea
Edward Mazria	Architecture 2030. United States
Gyu young Yoon	Nagoya City University. Japan
Li Huai	China Academy of Building Research. People's Republic of China
Lyu Yanjie	China Academy of Building Research. People's Republic of China
Margaret Kam	Construction Industry Council. Hong Kong, China
Ming-Shan Jeng	Industrial Technology Research Institute. Chinese Taipei
Hideharu Niwa	Nikken Sekkei Research Institute. Japan
Okumiya Masaya	Nagoya University. Japan
Suwon Song	Korea Institute of Civil Engineering and Building Technology Republic of Korea
Usha Iyer-Raniga	The Royal Melbourne Institute of Technology. Australia
Wei Feng	Lawrence Berkeley National Laboratory. United States
Wu Jianlin	China Academy of Building Research. People's Republic of China
Yaki Wo	Architecture 2030. United States
Yu Zhen	China Academy of Building Research. People's Republic of China
Zou Yu	China Academy of Building Research. People's Republic of China

ACKNOWLEDGEMENT TO SUPPORTERS OF THIS REPORT

Alex Hinds	Sonoma State University. United States
Andrew Garrett	Design Avenues LLC. United States
Annamaria Buonomano	University of Naples Federico II. Italy

Caroline Gagnon	City of Varennes. Canada
Denis Hayes	Bullitt Foundation. United States
George M. Woodwell	Woods Hole Research Center. United States
In-ho Kim	Passive House Institute Korea. Republic of Korea
Jungman Choi	ZARIM EnC & Architects. Republic of Korea
Katsuaki Hidari	Takenaka Corporation. Japan
Keith Robertson	Solterre Design. Canada
Koji Sugihara	Nikken Sekkei. Japan
Lee Young Ho	TOP Architects & Associates. United States
Leo Evans	Oberlin College. United States
Liangzhu Wang	Concordia University. Canada
Lukas Swan	Dalhousie University. Canada
Masaya Hiraoka	Kajima Corporation. Japan
NELHA	Natural Energy Laboratory of Hawaii Authority. United States
Patrick Hamilton	Science Museum of Minnesota. United States
Philippe S. Cohen	Stanford University. United States
Randall Smith	The Putney School. United States
Ross Elliott	Home sol Building Solutions Inc. Canada
Ryozo Ooka	The University of Tokyo. Japan
Takuya Tanaka	Technology Center / TAISEI Corporation. Japan
Tomohisa Takebe	Nihon Sekkei, Inc. Japan
Zhu Li	APEC Sustainable Energy Center. People's Republic of China

Page

Figures

List of Figures

Figure 1-1	The 11 th APEC Energy Ministerial Meeting on 2 September 2014. Beijing, China	1
Figure 1-2	Passive ultra-low energy consumption Green building technical guidance	8
Figure 1-3	Primary Energy Flow of Net Zero Energy Building	9
Figure 1-4	Energy Saving by the method of Demand and Supply Side	10
Figure 1-5	A Common Definition for Zero Energy Building	11
Figure 1-6	Two workshops of project EWG 03 2013A	13
Figure 1-7	Two workshops of project EWG 02 2015A	13
Figure 2-1	IEA Joint SHC Task 40 Building information template	16
Figure 2-2	Japan NZEB investigation template (SHASE)	17
Figure 2-3	China Passive Ultra-low Energy building investigation template	18
Figure 2-4	United States DOE NREL building database	19
Figure 2-5	ENOB energy-optimized construction database	20
Figure 2-6	Construction 21 building database	21
Figure 2-7	APEC Nearly (Net) Zero Energy Building Best Practices	23
e	Information Collection Template	
Figure 3-1	The Growth Trend of NZEB in APEC region	25
Figure 3-2	Building Type	26
Figure 3-3	Magnify Credit Union - South Lakeland, United States	26
Figure 3-4	NREL Wind Site Entrance Building (SEB), United States	27
Figure 3-5	Building Scale	27
Figure 3-6	Jinchun Zero-Energy Town House, Korea	28
Figure 3-7	Indoor temperature setting	29
Figure 3-8	Indoor relative humidity	29
Figure 3-9	HDD and CDD of the projects locations	31
Figure 3-10	Energy balance chart for Net Zero Energy Buildings	32
Figure 4-1	Roof U-value of NZEB	33
Figure 4-2	Wall U-value of NZEB	34
Figure 4-3	Window U-value of NZEB	34
Figure 4-4	Window SHGC value of NZEB	35
Figure 4-5	Air tightness design	36
Figure 4-6	Passive Strategies adopted in projects	37
Figure 4-7	Solar tube for NZEB projects in China	39
Figure 5-1	Active Strategies adopted in projects	40
Figure 5-2	The Xingfubao Passive Project	41
Figure 5-3	Zero Carbon Green Home (ZCGH), Republic of Korea	42
Figure 5-4	Pellet boiler and storage in ZCGH	42
Figure 5-5	The Eco Terra House. Canada	44
Figure 5-6	The Bullitt Center, United States	45

Figure 5-7	The high efficient GSHP and in-floor radiant system in Bullitt	46
	Center	
Figure 5-8	Seoul Energy Dream Center. Republic of Korea	46
Figure 5-9	Shenyang Jianzhu University Sino-German Passive House. China	47
Figure 5-10	The ground cooling system together with the mechanical air heat	48
	recovery system	
Figure 5-11	PV panel system serves public area lighting	48
Figure 5-12	Integrated energy system	49
Figure 5-13	Lighting Control System in CABR. China	50
Figure 6-1	Renewable applications in NZEB	51
Figure 6-2	JMSB Solar Wall	51
Figure 6-3	Detail showing attachment of PV modules and airflow paths around	52
	the bottom frame of a PV module and into the transpired collector.	
Figure 6-4	Varennes Library (roof BIPV is part BIPV/T)	53
Figure 6-5	Major building energy systems in the Varennes Library illustrated	54
	in a building cross section schematic	
Figure 6-6	Orient Sundar Experts Apartment. China	55
Figure 6-7	Solar thermal domestic water system	55
Figure 6-8	High-temperature solar collector	56
Figure 6-9	Median-temperature solar collector	56
Figure 6-10	Median-temperature solar collector	57
Figure 6-11	Wind NRG Partners, LLC, United States	57
Figure 7-1	Comparison of NZEB cost and standard building cost	59
Figure 7-2	Incremental cost allocation	60
Figure 7-3	Capital Sources of projects	60

Tables

List of Tables <u>Page</u> Table 1-1 Main performance criteria of Chinese passive nearly zero 8 energy buildings Base temperature of heating and cooling Table 3-1 30 Table 4-1 Typical passive energy saving strategies 36 Table 5-1 Existing heating technologies together with their cost and 44 efficiencies

CHAPTER 1 General Information

Asia-Pacific Economic Cooperation (APEC) is the largest regional international organization and is also the vital platform for APEC region's international energy cooperation.

1.1 The APEC energy intensity goal

The APEC Energy Intensity Goal aims to reduce energy intensity for APEC as a whole by 45% over the period 2005 to 2035, but does not set out any economy-specific targets. It is a followon to the Sydney Declaration (2007), which aimed to reduce energy intensity by '25% from 2005 levels by 2030'.

In 2012, the St. Petersburg Declaration introduced an enhanced 'aspirational goal to reduce aggregate energy intensity of APEC economies by 45% from 2005 levels by 2035' (APEC 2012).

In 2014, the Beijing Declaration introduced an 'aspirational goal of doubling the share of renewables in the APEC energy mix, including in power generation, from 2010 levels by 2030' (APEC 2014).

Figure 1-1 The 11th APEC Energy Ministerial Meeting on 2 September 2014. Beijing, China

1.2 APEC high-level urbanization

Urbanization is a necessary path toward modernization and how to make this path sustainable and environmental friendly has been now a worldwide issue. The Asia-Pacific region's innovative development, economic transformation and upgrading, and recent economic growth resulted in a rapid increase in energy demand.

The APEC Economic Leaders endorsed the APEC Cooperation *Initiative for Jointly Establishing an Asia-Pacific Urbanization Partnership* in Beijing in November 2014, to deepen urbanization partnership through collective efforts and concrete actions. To encourage member

APEC Asia-Pacific Economic Cooperation

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building

economies to deepen the Asia-Pacific urbanization partnership and realize Asia-Pacific goal of common development, prosperity and progress, 9 proposals are put forward to realize Asia-Pacific goal of common development, prosperity and progress, we choose five of them to list below^[1]:

- Promote inclusive and dynamic urban growth.
- Improve urban infrastructure.
- Build smart cities.
- Develop green cities.
- Boost APEC cooperation on sustainable urban development.

In order to achieve this goal, the APEC National Energy Administration (NEA) selects a series of projects on advanced urban development technologies, concept, mode and solutions. The Low-carbon Modern Town (LCMT) projects have received more attention and established a sound research, development and implementation conditions during which their share of building energy consumption is once again emphasized.

Building energy consumption takes 30% to 40% of total primary energy in APEC economies and has a fast increasing trend in developing economies due to the urbanization rate increase and living standard improvements. The wide range promotion of NZEB and mass energy saving consciousness is the critical point to make NZEB achieve its real impact - clean, sustainable, low carbon emission goals in the building sector.

Nearly (Net) Zero Energy Building (NZEB) has been proved to be the most effective measure of reducing energy consumption in the building sector, and also work as an important pillar of LCMT and ESCI^[2].

1.3 APEC Nearly/Net Zero Energy Building

According to UNFCCC 2015, carbon emissions during building LCA account for 30% of global carbon emissions and this proportion will be up to 50% if the building energy consumption continues at current speed^[3]. This also increases risks and vulnerability of countries, regions and local communities to climate change impact. Rapid urbanization, especially in emerging economies is only going to accelerate this impact.

Since it is still at a growing stage, there is no unified definition for net zero energy building. Each economy put forward the definition in a constantly updated way.

1.3.1 Policies and program

Since the energy consumption of building cause more and more attention, for now, NZEB is starting at a rapid developing stage.

1.3.1.1 Canada

Approximately one third of Canada's greenhouse gas (GHG) emissions are attributed to building energy consumption. Buildings also account for about 53% of Canada's electricity consumption^[4].

Through Natural Resources Canada's Office of Energy Research and Development (OERD),

the Government of Canada provides funding for research, development and demonstration (RD&D) projects to support innovation in clean energy sector. The funding programs administrated by OERD include Clean Energy Fund (CEF) initiated in 2009, ecoENERGY Innovation Initiative in 2011, the Energy Innovation Program (EIP) in 2016, and Program of Energy Research and Development (PERD). These funding programs supported the development and deployment of clean energy systems and building technologies that suitable for net-zero energy buildings and communities such as biomass-based urban central heating demonstration project in Quebec, community-level solar energy project in BC, cold climate air-source heat pump, BIPV/T, integrated air to water heat pump system for domestic hot water and space heating, high efficiency energy recovery and intelligent ventilation system for NZEH, etc.

The national target for Canada's public facilities is to reduce greenhouse gas emissions by 17 percent from the 2005 levels by 2020. Among the proposals for the 2016-2019 cycle is a proposal for public facilities to reduce greenhouse gas emissions by 30 percent from 2005 levels by 2030. The Federal Buildings Initiative (FBI) is a voluntary program that helps facilitate energy efficiency retrofit projects in buildings owned or managed by the Government of Canada. Developed and administered by Natural Resources Canada's Office of Energy Efficiency, it enables federal organizations to implement these projects through third-party energy performance contracts without necessarily using their own capital funds¹. By this project, 15-20 percent of energy have been saved and this means a reduction of 235 kilotonnes of GHG emissions. Annual savings of \$44 million have been reinvested into programs for Canadians while reducing the impact of government operations on the environment.

Other levels of government, institutions and private sector firms also draw on the FBI's experience for help in designing their own energy efficiency programs.

EQuilibrium[™] is a national sustainable housing demonstration initiative, led by Canada Housing and Mortgage Corporation's (CMHC) that brings the private and public sectors together to develop homes, and eventually communities that are a model for sustainable living^[5]. EQuilibrium[™] homes are designed to address occupant health and comfort, energy efficiency and renewable energy production, resource conservation, reduced environmental impact and affordability. Fifteen projects were selected and eleven were built and monitored. The EQuilibrium[™] housing initiative represents a vision for reducing the energy intensity and environmental impact of Canada's housing sector and supports the integration of renewable energy solutions with the design and construction of housing while helping Canada maintain a clean and healthy environment.

To increase the market adoption of net-zero energy homes (NZEH) by demonstrating the feasibility of net zero energy housing on a community scale in Canada, NRCan's Innovation and Energy Technology Sector led "Net-zero Energy Housing Community Demonstration Project" and \$1.9 million from ecoENERGY Innovation Initiative fund was contributed to the project. Five homebuilders in four provinces built a total of 25 net zero energy and net zero energy ready homes. This project addresses the challenges in building NZEH performance levels specific to production housing and acts as a platform for the broader adoption of NZEH across Canada.

Canadian Home Builder Association (CHBA) founded the Net Zero Energy Housing Council (NZC) in 2014 to support CHBA members' voluntary adoption of Net Zero Energy Housing.

A pilot of the Net Zero Energy Labeling program developed by the CHBA was launched in 2015. The program provides the industry with a clearly defined yet rigorous 2-tiered (NZE and NZE Ready) technical stand that will distinguish and recognize builders and renovators and their NZE homes. To encourage high levels of industry adoption, the program is striving to keep the administrative process simplified. The CHBA Net Zero Home Labelling Program has been designed so that a home could still qualify for Net Zero Ready, R-2000, or ENERGY STAR ® if Net Zero isn't achievable. Net Zero Energy Ready Homes are up to 80% more energy efficient than homes built to code.

1.3.1.2 China

During the recent three decades, energy consumption in China has been increasing rapidly due to economic growth and development. With speeding modernization and urbanization, building energy consumption has steadily increased in China.

Since 2006, The central government has issued a series of measures about BEE to respond to the challenge of rapid increasing building energy consumption owing to the increasing demand of more new buildings and household appliances, in the "Eleventh Five-Year Plan period".

The *Passive Ultra-low Energy Green building Technical Guide* was published by Ministry of Housing and Urban-Rural Development (MoHURD) in November, 2015 which was considered as China's first Ultra-low energy building technical guidance. Under the encouragement of MoHURD, a series of publicize, implement were conducted and in December, 2016, the first batch of Passive Ultra-low Energy building Certification were granted to 16 demonstrations, to announce the outstanding design, construction and operation. The fast development situation made Chinese government no choice but push great effort to improve building energy efficiency.

Besides central government, local government also adopted important fiscal incentive policies of building energy efficiency including: Special fund for energy efficiency of government office buildings and large-scale public buildings, Reward fund of energy efficiency retrofit for existing residential buildings in China's northern heating region, Special fund for demonstration of renewable energy application in building, Subsidy fund for building integrated photovoltaic (BIPV), Subsidy for city-level demonstration of renewable energy application, Financial subsidy for promotion of high efficiency lighting products.

1.3.1.3 Japan

In Japan, energy efficiency was connected strongly with energy security and cover a wide variety of industries. The Japanese government believes that energy efficiency policies for each sector should be complemented with policies to promote lifestyle changes and that the general awareness has to be increased.

(1) Energy Conservation Law

The Energy Conservation Law (ECL) was enforced in Japan in 1979 after the second oil crises and has subsequently been revised several times ^[6]. There are four major areas addressed by the ECL. Groups targeted in each area are:

- Housing and buildings: building owners/developers and managers
- Factories, etc: Managers of factories and workplaces
- Equipment and appliances: producers and importers of equipment and appliances
- Transportation: transport companies
- (2) Action Plan and Roadmap of ZEH and ZEB

The program "Committee on Realization and Generalization of ZEB" was organized in 2009 in order to examine the roadmap to realization and generalization of Zero Energy Building (ZEB). By introducing energy saving measures for buildings, this committee proposed to realize ZEB as the standard for new buildings by 2030.

Ministry of Land, Infrastructure and Transport (MLIT), Ministry of Economy, Trade and Industry (METI) and Ministry of Economy (MOE) published the roadmap for ZEH and ZEB by 2030, eventually aim the realizing Life Cycle Carbon Minus (LCCM) building to reduce CO2 emissions throughout the housing lifecycle: construction, living, demolition, reuse and etc.

1.3.1.4 Korea

Among the various parts of energy consumption, according to *Energy Survey Report* (2011), Korea Energy Economics Institute, 21.2% of Korea primary energy was consumed by the building sector. According to Presidential Conference on Green Growth hold on November 5th, 2009, Korea tries to reduce 80% of cooling/heating energy in building sector by 2017.

Moreover, on July 17 2014, Ministry of Land, Infrastructure and Transport issued **The Activation Plan of ZEB Corresponding to Climate Change** on the 11th General Meeting of the Presidential Advisory Council on Science and Technology (PACST) which clearly analyzed the barriers and obstacles of ZEB promotion setting up the future roadmap step by step. The plan also showed the corresponding financial policy and subsidy for pilot projects, work distribution and calculation of the expected social, environment and economy effect.

1.3.1.5 United States

In United States, NZEB promoting policies are taken according to the right of the building ownership.

(1) For federal buildings.

The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of floor space. With the goal of achieving zero-net-energy, the federal government enacted the Executive Order 13514, which is an executive order titled Federal Leadership in Environmental, Energy, and Economic Performance that U.S. President Barack Obama issued on 5 October 2009^[7].

This executive order mandates federal buildings and leases to meet Energy Efficiency Guiding Principles. The timeline and means for achieving the stated goal of zero-net-energy federal

buildings can be summarized as follows:

- By 2020, all planning for new Federal buildings should achieve Zero-Net-Energy by 2030.
- Zero-Net-Energy goals are to be incorporated into the process of buying or leasing new government properties.
- At least 15% of existing federal buildings and leases need to meet the Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings by 2015.
- (2) For Commercial and residential buildings.

The **Energy Independence and Security Act of 2007 (EISA 2007)** is an Act of Congress concerning the energy policy of United States, which aims at the same objectives with NEP. EISA 2007 authorizes DOE to host industry-led Commercial Building Energy Alliances and to establish specific goal for commercial buildings^[8]:

- Net zero energy use in all new commercial buildings constructed by 2030
- Net zero energy use in 50% of United State commercial building stock by 2040
- Net zero energy use in the entire United States commercial building stock by 2050

As for residential buildings, the incentive green building competition Energy Free Home Challenge (EFHC) is opened to teams around the world in 2010. The competition encouraged both design innovation and cost reduction with the purposes of popularizing the concept of "Zero net energy" home and "Zero net cost" home.

1.3.2 Nearly/Net Zero Energy Building definition

From technical level, NZEB is a measure of a building's energy performance, whereby it produces as much or more renewable energy as it uses over the course of a year in operation.

After years of development, NZEB has been the subject of research initiatives for institutions and scholars to pay attention to and there is still lack of a definition for NZEB which can reach worldwide consensus.

1.3.2.1 Canada

Canada lacks an official roadmap for the building sector addressed towards NZEB^[11]. The term Net Zero Energy Housing (NZEH) rose out of the US Department of Energy's Zero Energy Homes research initiative that started in 2000. In 2006, CMHC EQuilibrium[™] Housing Pilot Demonstration Initiative describes a home that produces as much energy as it consumes annually. This is done through a variety of means, including ^[12]:

• Reducing energy loads through a climate-responsive, high-performance building envelope and use of energy efficient appliances and lights throughout the house

- Increased use of passive solar cooling and heating techniques
- High-efficiency mechanical systems that match the lower energy requirements of the home

• Space and water heating assisted by commercially available solar thermal systems and heat pumps

• Electrical use offset by grid-connected commercially available photovoltaic (PV) systems

The NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) mainly uses the following definition of a net zero energy building: a net-zero energy building is defined as one that, in an average year, produces as much energy (electrical plus thermal) from renewable energy sources as it consumes^[13]. The production of energy from renewables on-site is the most difficult to achieve, but in sunny climatic conditions present in most of Canada, building-integrated solar systems make this possible, particularly for houses.

1.3.2.2 China

Since the1980s, energy-saving work in China has made remarkable achievements under the leadership of the ministry of housing and urban-rural development of the People's Republic of China, especially in the aspects of reducing the energy consumption of public buildings and heating energy consumption of residential buildings in severe cold area and improving the proportion of renewable energy's application ^[14,15]. At present, the 65% of energy efficiency standards are being executed^[16,17], the building energy-saving work slowed down the Chinese building energy consumption continued rapid growth trend and improve occupants' living environment.

The passive nearly-zero energy buildings in China is defined as " the buildings with the best envelope thermal insulation performance and air tightness, makes full use of natural ventilation, natural lighting, solar radiation and other technologies such as the passive method of getting energy from indoor non-heating source, minimizes the demands of heating and air conditioning and accomplishes the harmony and comfortable indoor environment. One of the key objectives of a passive nearly-zero energy buildings in China is to create a healthy and comfortable indoor environment. Meanwhile, the control performance criteria are very also vital to ensure the sound development of passive nearly-zero energy buildings.

The Ministry of Housing and Urban-Rural Development (MoHURD) published the "*Passive ultra-low energy consumption Green building technical guidance*" (Guidance for short) in November, 2015. The main performance criteria of Chinese passive nearly zero energy buildings are listed in Table 1-1^[18].

	-			_		-
Annual Heating and	Climate zones	Serve cold	cold	Hot summer and cold winter	Hot summer and warm winter	Temperature
cooling demand (kWh/ m ² .a)	Heating demand	≤18	≤15		≤5	
	Cooling demand			≤3.5+2.0×WDF	120 +2.2×DDH28	
The primary energy consumption for cooling, heating		≤60 kWh/m ² .a/(7.4kgce/m ² .a)				

Table 1-1 Main performance criteria of Chinese passive nearly zero energy buildings

and lighting	
Air tightness	N₅0≤0.6

This can be treated as the milestone for China's NZEB development. This was also the first time that China established the Ultra-low energy building definition officially which can be considered as the first step to NZEB.

The Ultra-low energy consumption building is a combination of higher thermal insulation performance, air tightness, and high efficient air heat recovery technology, which can adapt to the climate characteristics and natural conditions, thus can reduce the building heating and cooling requirements, make full use of renewable energy and provide a comfortable indoor environment at maximum extent.

Figure 1-2 Passive ultra-low energy consumption Green building technical guidance

The kick-off meeting of *Nearly Zero Energy Building Technical Standard* (Standard for short) was launched in October, 2016. The Standard will be published and implemented in 2019 which will be the first official NZEB standard in China.

In October 2015, with the support of the China Exploration & Design Association Architecture Branch (CEDAAB) and Architecture 2030, 24 international firms and 28 Chinese Local Design Institutes (LDIs) signed the China Accord, a voluntarily pledge to plan and design to carbon neutral or near carbon neutral standards. CEDAAB's newly-formed Zero Carbon Green Building Design Committee is committed to pursuing a professional training program for the architecture and planning community in China on Zero Net Carbon (ZNC) principles, strategies, and applications. In late October 2016, an historic two-day forum and workshop event Towards a Zero Carbon Built Environment was held in Wuhan, China, and established ZNC as a necessary and achievable goal for buildings and developments.

1.3.2.3 Japan

Japan has continued its efforts to promote buildings featuring and put up with a series of high performance building, such as "energy-efficiency building", "environmental-harmonious building", "green building", "low-carbon building" or "sustainable building". The economy launched an effort to promote net zero energy buildings using renewable energy technology in 2009.

According to the definition given by SHASE, NZEB is defined as:

"A building that consumes zero or nearly zero energy on an annual net basis by reducing primary energy consumption in the building as a result of enhanced energy efficiency performance of the building and facilities, neighboring buildings, on-site utilization of renewable facilities, networking of buildings, on-energy, and so on"

Figure 1-3 Primary Energy Flow of Net Zero Energy Building

Figure 1-3 explains the boundary of NZEB definition in Japan with on-site renewable sources. For a Net Zero Energy Building, the amount of generated energy should compensate or surplus the consumed energy in annual calculation. Renewable energy is on-site generation from on-site renewables, like solar, bioenergy, wind, etc.

From researching the definition of NZEB in Japan, a clear developing route can be concluded as: Low Energy Consumption Building--Sustainable Building-- Net Zero Energy Building--Zero Energy Building.

The Ministry of Economy, Trade and Industry (METI) has also created guidelines and standards for Net Zero Energy Building^[19]:

ZEB and ZEH is a term to describe a building or house with zero net primary energy consumption annually, usually utilizing a combination of energy producing technologies including renewable energy and energy efficient facilities and systems.

Figure 1-4 Energy Saving by the method of Demand and Supply Side

If: A*B=1.0*1.0=1.0	It is Reference Building
If: A*B=0.5*0.5=0.25	It is 75% Energy Saving Building

The goal is to achieve a net zero energy consumption by generating energy through photovoltaic power production while adopting "better insulation" and "higher equipment performance" set forth for ZEHs to achieve 20% energy savings. If energy savings of 75% of the net value is achieved, the Nearly ZEH status is granted. If energy savings of 100% or more is achieved, the ZEH status is granted.

1.3.2.4 Korea

In Korea, "Zero Energy Building" is defined as "A building that maximizes thermal insulation performance to minimize energy consumption, and uses renewable energies to provide energy self-sufficiently."

To accomplish zero energy buildings as soon as possible, Korea developed three kinds of zero energy buildings as follow:

Low-rise Zero Energy Building

A building that can provide energy required in cooling, heating, lighting and ventilation selfsufficiently within the corresponding site.

High-rise Zero Energy Building

A building that can provide energy required in cooling and heating within the corresponding site. It need to maximize the renewable energy system installations to provide the energy required in cooling and heating self-sufficiently, and the shortages can be covered by other renewable energy installations from nearby schools, parks, etc.

Zero Energy Building Town

It is to expand the range of zero energy from individual buildings to district units, and enforce the development targeting new towns and municipalities.

It is to utilize the use of recent technologies, such as Information & Communication Technologies, and linked with governmental R&D to aim for actualization of the avant-garde smart zero energy city.

1.3.2.5 United States

DOE and National Renewable Energy Laboratory (NREL) published "A Common Definition for Zero Energy Buildings" in 2015^[9] which described the NZEB definition in four categories according to where renewable energy resources were shared.

• Zero Energy Building (ZEB)

An energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

• Zero Energy Campus

An energy-efficient campus where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

• Zero Energy Portfolio

An energy-efficient portfolio where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

• Zero Energy Community

An energy-efficient community where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

Figure 1-5 A Common Definition for Zero Energy Building

This definition makes clear of the energy calculation boundary—building, campus, portfolio, and community. Besides the definitions that proposed in the governments' policies and national program reports, many other institutes also present definitions according to their research work. New Buildings Institute (NBI) is leading in NZEB research and dissemination, its Zero Net Energy (ZNE) definition is one that has been widely used ^[10]:

The amount of energy provided by on-site renewable energy sources is equal to the amount of energy used by the building.

More recently, in 2016 Architecture 2030, New Buildings Institute, and Rocky Mountain Institute issued a definition for Zero Net Carbon (ZNC) buildings to accommodate all building types – new and existing residential, commercial, institutional, and industrial buildings – in various settings, including those located in dense urban environments where on-site renewable energy production may be limited. A ZNC building is defined as:

A highly energy efficient building that produces on-site, or procures, enough carbonfree renewable energy to meet building operations energy consumption annually.

Current definitions of NZEB, ZEB, and ZNE are compatible with the ZNC definition because they all accommodate offsets for carbon-based energy consumption from energy efficiency and new renewable energy capacity. These definitions represent a narrower path for achieving ZNC and are specifically applicable to locations that have enough on-site renewable energy production capacity to meet annual energy demands. However, these definitions are limited in application to mostly low-density, low-rise, suburban, or rural building applications. The ZNC definition is intended to be more applicable to the growing dense urban developments in the APEC region.

The ZNC definition is closely aligned to the European definition of a Nearly-Zero Energy Building (NZEB) as it also allows for accessing nearby off-site generated renewable energy. While all energy and greenhouse gas emissions reduction targets are important, with the move to a carbon emissions-free built environment by 2050, all strategies will converge to meet the ZNC definition.

1.3.3 APEC Nearly/Net Zero Energy Building program

(1) EWG 03 2013A -Nearly (Net) Zero Energy Building Program

The APEC Nearly/Net Zero Energy Building Program first began in 2013, EWG 03 2013A - Nearly (Net) Zero Energy Building which responds to the declaration at the 9th APEC Energy Ministers Meeting, held in Fukui, Japan on 19 June 2010, they noted that the introduction of low-carbon technologies in city planning to boost energy efficiency and reduce fossil energy use is vital to manage rapidly growing energy consumption in urban areas of APEC. The goal of Project EWG 03 2013A is to enhance mutual understanding of economy's building energy saving code--the policy, definition, R&D programs, related associations of NZEB among APEC economies were studied and experiences were shared. Two workshops were held during the project:

- The APEC workshop on Nearly/Net Zero Energy Building was held in Beijing, China on 30-31 October 2013 with 35 speakers and 70 participants from 11 economies attended the workshop.
- The *APEC workshop on Nearly/Net zero energy building & Community* workshop was held in Beijing, China on 22-23 October 2014 with 21 speakers and 80 participants that from 20 economies attended the workshop.

1st APEC workshop on Nearly/Net Zero Energy Building

2nd APEC workshop on Nearly/Net zero energy building & Community

Figure 1-6 Two workshops of project EWG 03 2013A

(2) EWG 02 2015A - APEC Nearly (Net) Zero Energy Building Best Practices and Energy Reduction Results Comparative Study

This project EWG 02 2015A - APEC Nearly (Net) Zero Energy Building Best Practices and Energy Reduction Results Comparative Study is a continuation of Project EWG 03 2013A. The distinction from the previous project is this project will carry out professional in depth comparative research with the detail information collected of best practice NZEB pilot buildings, which was didn't covered in the previous project, to showcase how tremendous energy reduction could be achieved by integration design, advanced technology utilization and NZE oriented management & commissioning in buildings. Two NZEB pilot projects workshops were prepared in 2015 and 2016:

- The APEC-CZEBS iiSBE Smart Net Zero Resilient Buildings and Communities Net Zero Built Environment Symposium was held in Montreal, Canada on 20-21 August 2015 focusing on sharing the information of existing commercial pilot projects. 35 speakers and 130 participants attended the workshop (See Appendix IV for the meeting notes);
- The APEC workshop on Nearly/net zero energy building- From best practices to mass market was held in Taichung, Chinese Taipei on 11 April 2016. 8 speakers and 35 participants from 11economies got together to discuss the different technology roadmaps of low-rise and high-rise residential buildings in various climate regions (See Appendix V for the meeting notes).

3rd APEC-CZEBS iiSBE Smart Net Zero Resilient Buildings and Communities Net Zero Built Environment Symposium

4th APEC workshop on Nearly/net zero energy building– From best practices to mass market

Figure 1-7 Two workshops of project EWG 02 2015

(3) EWG 15 2016A APEC Nearly (Net) Zero Energy Building Roadmap Study responding to COP21

As the continuation of project EWG 02 2015, the project EWG 15 16A have been approved by APEC secretariat in October, 2016. The objective of this program is to strengthen the energy reduction goals between UN and APEC 2035 energy intensity target for the building sector, harmonize the Nearly/Net Zero Energy Roadmap within the APEC region, find a flexible, approach to reducing building energy consumption through readily accessible methods to achieve NZEB in all climatic zones, prioritize a list of recommendations for APEC economies to fast track the goal of NZEB.

The project EWG 15 2016A started on November, 2016 and will be completed in December, 2017. As an important supplement to trading regimes, this project will contribute to enhanced economic cooperation on building materials and building energy systems, equipment and appliances, thus promoting regional economic integration, leading to the fourth statement on Peru's Priorities.

CHAPTER 2 NZEB Best Practices Template Design

On the basis of previous study, an in depth comparative research to the latest NZEB best practices is take with the questions:

(1) How many demonstration building are already built and under built with the objective to achieve NZE in APEC regions. What is the distribution in building type and climate zone?

(2) What technologies are used in the demonstration building and what is the real energy reduction result of different technologies compared with the regular building energy system?

(3) How to further promote NZEB in APEC region according to the best practices that had already existed.

This APEC NZEB best practices information collection template is at the request of APEC project EWG 02 2015A: APEC Nearly (Net) Zero Energy Building Best Practices and Energy Reduction Results Comparative Study, which aims at helping collecting information existing NZEB demonstration projects that could cover complete and necessary information of the target project, thus to take a comparative study of various best practices.

2.1 Key information analysis for NZEB best practice

The Nearly/Net Zero Energy Building sector, including the residential and services sub-sectors, uses a wide array of technologies. They are used in the building envelope and its insulation, in space heating and cooling systems, in water heating, in lighting, in appliances and consumer products, and in business equipment. The long lifetime of buildings and related equipment are both important influencing factors for building energy consumption, especially for NZEBs.

Some of the technologies needed to transform the buildings are already commercially available and cost effective, with an economic payback periods.

2.2 Support materials for NZEB best practices template design

(1) IEA Joint SHC Task 40 Building information template

During the program, the team of SHC Task 40 Task C developed the building factsheet and investigate for 30 Net ZEBs case studies, the website of the report *Solution Sets and Net Zero Energy Buildings ---A review of 30 Net ZEBs case studies worldwide* can be found at: http://task40.iea-shc.org/data/sites/1/publications/T40A52-DC-TR1-30-Net-ZEBs.pdf

Figure 2-1 IEA Joint SHC Task 40 Building information template

(2) Japan NZEB template

The template model provided by Prof Gyuyoung, and Dr Niwa which was proposed to present energy balance for providing and demanding energy amount. Based on this template, 13 cases were investigated and studied. The template is short but can clearly show the composing of system outline, used energy conversion factor, demanding and supplying energy flow.

Figure 2-2 Japan NZEB investigation template (SHASE)

(3) China Passive ultra-low energy consumption of green building projects investigation

The MoHURD conducted an investigation in 2014 to the existing passive ultra-low energy consumption demonstrations nationwide. 35 pilot demonstration accepted the investigation. The template was developed by China Academy of Building Research (CABR) and China Passive Building Alliance (CPBA), as shown below.

Passiv	e Ultra-low Ener	gy Building Pi	roject I	nve	estigat	ion		L	
Basic Information									
Building Name		Location		Рго	vince	City	District		Indoor envir
Floor Area (m ²)		Building Typ	e	cRe	sidential	D Public	⊏Both		indoor chvir
Starting Date		Completion Da	ite						
Project Unit		Construction U	nit						Energy savi
Design Unit		Simulation Softv	vare					F	
Certification	(National Level, Prov Other green building	· · · · ·	ionstration	ı/ Sc	i-Tech S	Support P	lan;		External
	Name		E-mai	1					
Contact Person	Institute/Company		Telephor	ne					Windo
Key Technical Index	tes							F	
	Energy Consum	ption Targets	Design	ı Val	lue	Testing	Value		Sun sha
Energy	Heating load	(W/m ²)						L	
consumption	Cooling load	(W/m ²)							Key princip heat brid
Target	Primary Energy Consumption kWh/(m2)							F	
	Air tightness (m	³ /m ² h@50Pa)							Energy sy
	Roof U-value (W/m ² K)							-	
	Wall U-value (W/m ² K)								Heat reco
	Impracticable Floor U-Value (W/m ² K)								Other solu
	Basement Roof U-V	/alue (W/m²K)						ŀ	Other Techi
Construction	Window U-valu	e (W/m²K)							1. Feasibili
Elements (Building Envelope)	Solar heat gain coe							2. Energy	
	Surrounding ground U							3. Detail da	
	Basement externa							4. Constru	
	(W/m	² K)							5. Test Rep
	Other I	index							

	Indoor Temperature ((")
	Indoor Relative Humidity	(%)
indoor environment	Indoor Air Quality (CO2	ppm)
	Other indoor requirem	nent
Energy saving appro	paches	
	Thermal Insulation Type	
External Wall	Material Category:	Material thickness
Window	Numbers of glass layers	Fill content
wildow	Coating material	Window frame structure
Sun shading	Shading type	
Sun snading	Sun shading devices	Movable or not
Key principal for heat bridge		·
	Heating system	Cooling system
Energy system	energy sources Domestic hot water	energy sources
	energy sources	Others
Heat recovery	System patterns	Heat recovery efficiency
Other solutions		
Other Technical Do	ruments	
Feasibility Study	Report	
Energy Saving C	alculation Report	
Detail drawings t	for Key Heat Bridge	
Construction Des	im Description	

Figure 2-3 China Passive Ultra-low Energy building investigation template

(4) United States DOE NREL building database

The U.S. Department of Energy and the National Renewable Energy Laboratory (NREL) developed the high performance building database providing a unique central repository of indepth information and data on high-performance, green building projects across United States and abroad. This collaboration increases the reach of the information and saves building designers and owners from having to provide the same information to multiple sources.

The Database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, the websites of the database can be found at: <u>https://buildingdata.energy.gov/</u>

The high performance building database provided a good example for building information collection, from general information, energy consumption, indoor environment, design process, financial and other information that can collected from projects.

Indoor E Process Finances

People Site

Wind NRG Partners, LLC, New Manufacturing Facility

Information	General Information
Details	QUICK FACTS
wironment	
	LOCATION
	Hinesburg, VT
	BUILDING TYPE
	 Manufacturing or Industrial with some Retail Space
	TOTAL FLOOR AREA
	4,320 M ²
	PROJECT INFORMATION
	PROJECT FULL NAME
	PROJECT OWNER
	NRG Systems, Inc.
	OCCUPANT TYPE
	Corporation, for-profit
	NRG Systems (Now Renewable NRG Systems) designs and manufactures wind-measuring equipment for the global wind energy industry. NRG planned this new office and manufacturing facility to embody its core mission: furthering the use of renewable energy and providing a healthy, productive, and beautiful workplace for its employees.
	ENVIRONMENTAL ASPECTS
	An integrated design approach was used, and active and passive environmental strategies were incorporated into the project to accomplish NRG's ambitious human and environmental goals to build a model workplace and to achieve a LEED(r) Gold rating.
	Careful building siting preserved native vegetation, agriculture, recreation, and wildlife habitat while providing a serene and healthy setting for NRG. The site is located within walking distance of the town center.
	The open floor plan and three-story vertical openings at the building's center enhance ventilation and cooling. The exterior skin of this steel building was carefully detailed to eliminate all major thermal breaks while allowing penetrations for solar gain, daglighting, and verbillion. A word-pelied boiler provides radian the at The radiant

Figure 2-4 United States DOE NREL building database

(5) ENOB energy-optimized construction database

"Buildings of the future" is the guiding concept behind EnOB – research for energy-optimized building. The research projects sponsored by the German Federal Ministry of Economics and Technology involve buildings that have minimal primary energy requirements and high occupant comfort, with moderate investment costs and significantly reduced operating costs.

The buildings in the energy-optimized construction database are divided as new buildings and refurbishment buildings, together with other new technologies, software, and analysis. The key parameters of each project are recorded in fixed template, as is shown in Figure 2-5 which covers the basic information, description, research focus and energy consumption level.

The database is under continuously updating and have covered probably 40 new buildings and 30 refurbishment buildings. The websites of the database can be found at: http://www.enob.info/en/

Single-family homes with renewable electricity and heat provision

🙆 EnBau

Climate-neutral building concepts are more in demand than ever before as a result of the latest energy policy requirements of the EU and the German federal government. In Freiberg, the performance of two single-family homes conceived as energy self-sufficient buildings was scientifically investigated for two years. For two different utilisation profiles, it can be shown that high solar coverage levels are possible, particularly for the power and heat provision. The buildings have a very low heating requirement, which is largely covered by generously dimensioned solar collectors and heat storage units. There is also a wood-fired, water-cooled stove. A photovoltaic system in combination with a battery storage unit ensures almost 100 per cent solar power provision. The building concept is now being marketed by a construction company.

Þ

The two identical single-family homes in Freiberg rely on completely renewable electricity and heating supplies. Photo from summer 2014. © Timo Leukefeld

Building summary	
Project status	Evaluated
Location	Franz-Mehring-Platz 10d, 09599 Freiberg, Sachsen
Completion	10/2013
Inauguration	11/2013
Building owner	Timo Leukefeld, Stephan Riedel
Operator	Timo Leukefeld, zugleich Nutzer
Gross floor area	279 m ²
Heated living area	206 m ²
Usable floor area (according to EnEV)	206 m ²
Measured energy characteristic values (in kWh/m2p.a.)	466 m ²
A/V ratio	0.72 m ² /m ³
Key aspects	Heat insulation, Glazing + windows, Optimised lighting, Ventilation + heat recovery, Regenerative + passive cooling, Thermo-active building element systems, Heat / cold storage, Control technology, operational management, building automation, Solar thermal energy, Photovoltaics, Biomass utilisation, Ecology of building materials

Figure 2-5 ENOB energy-optimized construction database

(6) Construction 21 building database

Construction21 is a collaborative platform dedicated to building professionals, to help them discover and develop new ways of sustainable building. Initially developed with the support of European Union (IEE project), Construction 21 platforms are managed by non-profit and academic organizations closely linked to building sector in each country.

Each of the project that collected in the database was acquired to fill in an information template, which can cover detailed project information (as is shown in Figure 2-6). The website of the database is: http://www.construction21.org/case-studies/

China Academy of Building Research NZEBuilding

	Building T Construct Delivery y Climate z summer. Net Floor Construct Number c Cost/m2 :	pe : New Construction ype : Office building < 28r ion Year : 2012 rear : 2014 anne : [Cwa] Mild, dry winte Area : 4 025 m ² Other ion/refurbishment cost : 2 fWork station : 2 Work sta 646 E(m ² k station : 1 300 000 E/Wo	r, hot and wet 600 000 € ₽ ation	PUBLISHED ON 08 JULY 16 BY SHICONG ZHANG INTERNATIONAL VIEWED 3213 TIMES PROPOSED BY :
Description Stakeholders	Energy	Renewables	Environmen	
Energy consumption Primary energy need : Primary energy need for standard by	75,00 kWh PE			Green Building Solutions Awards 2016 powered by Construction 21.org
Calculation method : CEEB : Final Energy : Breakdown for energy consumption Plug = 31%	Primary energy 0,00 kWh PE 22,00 kWh FE	needs /€ /m ² /year		

Figure 2-6 Construction 21 building database

2.3 The APEC NZEB Best Practices Information Collection Template

From the support materials above, we summarized the basic and necessary information that NZEB demonstrations should provide and developed the APEC Nearly/Net Zero Energy Building Best Practices Information Collection Template which is shown as below.

APEC Nearly (Net) Zero Energy Building							
Basic Information							
Building Name		Location (City)				
Building Type	□Residential □Office □School □Others (Please Specify)						
Heating Degree Day		Cooling Degree I	Day				
Net Floor Area (\mathbf{m}^2)		Treated floor area	(m ²)				
Number of storeys	F/ BF	Completion Da					
Cost USD /m² (Net Floor area)		ar					
Incremental Cost Allocation (%) Source of	Passive approaches Renewable energy sy Government Subsidy	ystem (%) 🛛		stem (%) %)		
Incremental Cost	Self-fund (%)	•					
Contact Person	Name	E-mail					
Contact Person	Institute/Company						
Key Technical Index	es						
	Energy Consumption Targets			Value	Average value for typical similar building		
	Heating load						
	Cooling load (W/m ²)						
Energy	Annual Heating Dem	and (kWh/m ² a)					
consumption	Annual Cooling Dem	and (kWh/m²a)					
	Primary Energy Cons	umption kWh/(m²)					
	Source to Site Co						
	(Electricity) Primary Energy Consumption Including:						
	□Heating/Cooling □						
Building energy codes or standards							
codes or standards	Technical I	ndicator	Design	Value	Standard Value		
Construction	Roof U-value	(W/m ² K)					
Elements	Wall U-value	(W/m ² K)					

1

(Building	Window	U-value (W/i	m ² K)				
Envelope)	Solar heat gain coefficient (SHGC)							
Luterope)								
	Air tightness (m ³ /m ² h@50Pa)						-	
	Energy Category				Main Parameters			
	Solar Thermal							
	Photovoltaic							
Renewable	Biomass –fired Boiled							
Energy		CHP						
THEIRY	W	/ind Turbine						
	Air So	ource Heat Pu	mp					
	Ground	Source Heat l	Pump	,				
	Total Ener	gy Supply 1	(Wh/	m²				
	Indoor Temperature ('C)							
Indoor	Indoor Relative Humidity (%)							
environment	Indoor Air	Indoor Air Quality (CO ₂ ppm)						
Energy saving appro	aches (Yes for)	0						
	Skylight	Solar Tub	es	Therm	al Zoning Passive Solar Heat Gain			
Passive	Site	Natural		Ground	round Cooling		Sun shading	
	Vegetation	Ventilatio	n		-			
Approaches	01							
	Others (Please							
	Specify) Energy	Advanced					Mechanical Air Heat	
	Efficient	Lighting		ficient liances	Load		Recovery	
	Lighting	Controls	Арр	nances	Manageme	m		
	D : 1							
Active Approaches	Displacement Ventilation	Kadiant Heating		oling	Air Source Heat Pump		Hot Water Heat Recovery	
	Other (Please							
	Specify)							

Figure 2-7 APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template

2

2.4 The APEC NZEB best practices investigation and collection results

This APEC NZEB best practices information collection template is at the request of APEC project EWG 02 2015A:APEC Nearly (Net) Zero Energy Building Best Practices and Energy Reduction Results Comparative Study, which aims at helping collecting information of different NZEB pilot projects among APEC economies, thus to take a comparative study of various best practices .

The template was sent to 18 experts over 8 economies: Australia; Canada; People's Republic of China; Hong Kong, China; Japan; Republic of Korea; Singapore; Chinese Taipei and United States. By sorting and filtering the feedback results, 100 best practices were selected and analysed, the results was shown in this report.

Since the information and data of some projects are commercially sensitive, we only list projects which have been authorized to disclose the information. For the detail information, please see the attachment that listed below:

Appendix I The 100 NZEB Best Practices List

Appendix II Figures of 100 NZEB Best Practices

Appendix III Selected Best Practices Information Template

CHAPTER 3 General Information of NZEB Best Practices Investigation

Energy use in buildings worldwide accounts for over 40% of primary energy use and 24% of greenhouse gas emissions. Accounting for the energy demand, some APEC developed economies set goals to achieve NZEB and already launched some research programs and accomplished successful demonstration projects. To conduct a comprehensive analysis of NZEB development, including technical solutions, we conducted an investigation on existing NZEB pilot demonstrations.

3.1 The growth trend of NZEB in APEC regions

The major difference between NZEB and current buildings is the reductions in energy use and greenhouse gas (GHG) emissions and this difference requires a fully innovative and integrated technical design. The statistical results of the 100 investigated projects shows that a rapid growth trend occurred in 2012 with 15 projects completed, and the amount of large scale NZEB projects began to rise in 2013 with 5 projects more than 5,000 square meters.

Figure 3-1 The Growth Trend of NZEB in APEC region

3.2 Building type and scale

The 100 best practices cover from residential to public and can be divided into 8 types in total--. Office, residential, multi-purpose, school, public service, museum & exhibition, library and others. Among the various types of building, office and school account for nearly half of the projects, offices account for 37% of the total and schools account for 12%. From the analysis of fund sources it is not hard to show that offices and schools can usually acquire more support from governments. Comparing with other building types, residential building including residential campus is easier to achieve zero energy and account for 17% of the total.

The multi-purpose building are buildings with integrated functions, for example:

[Best Practice] Magnify Credit Union - South Lakeland

Magnify Credit Union - South Lakeland (Figure 3-3), an integration of office and retail store. Design of multi-purpose NZEB should consider the energy demand for each part and this may turn out to be a complementation balance if conducted with a good design.

Figure 3-3 Magnify Credit Union - South Lakeland, United States

[Best Practice] THE SMALLEST NZEB—NREL WIND SITE ENTRANCE BUILDING

Among the 100 NZEB practices, building scale various in a significance difference. The smallest NZEB practice is NREL Wind Site Entrance Building (SEB) which is a 15 m² building serves as a guard post at the entrance to the National Renewable Energy Laboratory's Wind Site Research Area. Although small, the building is representative of many guard facilities, remote restrooms, and

outposts. The technologies used here could easily be scaled up to create single-story buildings for retail and office spaces, visitor centers, and contact stations. High value was placed on design simplicity to avoid complicated control schemes.

Figure 3-4 NREL Wind Site Entrance Building (SEB), United States

The largest NZEB project of the 100 investigations is an office building in Tokyo, Japan with $104,000 \text{ m}^2$ net floor area.

Figure 3-5 Building Scale

Figure 3-5 shows the statistical result of various building scale. It is surprised that there are 25 projects over 6,000 m² and 14 of them over 10,000 m². Among the large scale NZEB projects, the appearance of residential campus is a landmark progress for NZEB.

[Best Practice] Jinchun Zero-Energy Town

Jinchun Zero-Energy Town (Figure 3-6) is consisted of 100 detached houses and the renewable energy supply can cover all the energy demand. The project is under construction and will be accomplished in 2019.

Figure 3-6 Jinchun Zero-Energy Town House, Korea

3.3 Indoor environment quality (IEQ) in NZEB

Comfort was once considered something that occupants passively tolerate, more recent research has recognized that occupants adapt themselves and their environment in order to improve comfort. But for NZEB, comfort is critically assessed throughout the design and operation process. Here, indoor temperature, indoor relative humidity and indoor air quality are taken as the comfort index during the investigation.

3.3.1 Indoor temperature

Indoor environment of NZEB projects have great differences among various nations. Each NZEB demonstration design should follow local design specifications and standards. Commonly, most of the indoor design temperature is 25-26 $^{\circ}$ C in summer and 18-20 $^{\circ}$ C in winter.

Taking Energy Saving as the first priority, Japan has put great effort in cutting down building energy consumption. Some of the office indoor temperature are set to 28 $^{\circ}$ C to reduce cooling demand and use radiant cooling system as the comfort compensation.

For some region, dehumidification is a key influence factor that requires lower indoor temperature, like Hong Kong, China and Singapore, for example.

Figure 3-7 Indoor temperature setting

3.3.2 Indoor relative humidity

Compared to indoor temperature, the relative humidity of indoor air is also an important factor of body discomfort, especially for those hot and humid climate zones. For high temperature, humidity region, the more rigid humidity requirement, the lower temperature of the chilled water (for traditional HVAC system) and meanwhile, the higher cooling demand. The upper limit for China, Hong Kong, China, Singapore, and Chinese Taipei are set to 70% to reduce the cooling energy consumption.

Figure 3-8 Indoor relative humidity

3.3.3 Indoor air quality

Indoor air quality is a measure of the healthiness and comfort of air in buildings. Modern buildings tend to have high concentrations of occupants and materials that can compromise healthy IAQ unless sufficient solutions are implemented. Contaminants in the air are normally categorized as gaseous, particulates, or microbial. In large scale public buildings, such as large-scale shopping centre and office block, the composition of contaminants is usually very complex. For residential buildings, a commonly used index is CO₂ concentration which is easy for detection and can be taken as the fresh air volume control index. For now, the worldwide recognized CO₂ concentration standard is not higher than 1000 ppm.

3.4 Climate assessment

Climate is a critical variable in the design of a NZEB project. It can not only influence the external thermal loads of a projects, but also decide the whole technological route. Heating Degree Days (HDD) and Heating Degree Days (CDD) calculation are the first step during the design process which are commonly used to estimate energy consumption in the thermal design of the building. However, the various base temperature that adopted during the HDD and CDD calculation show different HDD and CDD values. Table 3-1 shows the heating and air conditioning base temperature among the investigated economies.

	Base temperature that adopted in HDD/CDD calculation		
Economy	Temperature adopted in HDD / °C	Temperature adopted in CDD / °C	
Australia	20	23	
Canada	20	23	
Hong Kong, China	18	23	
Japan	18	26	
Korea	20	23	
People's Republic of China	18	26	
Chinese Taipei	18	23	
United States	20	23	

Table 3-1 B	ase temperature	of heating	and cooling

From the investigation it can be shown that the indoor temperature are designed at a different baseline and this made a wide difference on HDD and CDD values. For the winter indoor environment, Hong Kong, China, Japan, People's Republic of China, and Chinese Taipei set the indoor temperature not lower than 18 $^{\circ}$ C but for Australia, Canada, Korea and United States, this baseline was set to 20 $^{\circ}$ C. This means a higher comfort requirement and meanwhile, larger heating demand. As for the summer indoor environment, Japan and China's indoor temperature

was set 26 $^{\circ}$ C, and the other investigated economies set the value as 23 $^{\circ}$ C or lower.

HDD and CDD values are usually taken as the reflection of local climate characters during building HVAC system design. However, different base temperature may lead to different HDD and CDD values. Higher HDD and lower CDD all means larger heating and cooling demand. Figure 3-2 shows HDD and CDD values of different locations. If calculated with unified base temperature, the HDD and CDD values will be higher than the current investigation results.

Figure 3-9 HDD and CDD of the projects locations

Actually, the gift of free energy is available in any climate, in different forms and quantities. The 100 best practices in this report nearly cover all the climate types

3.5 Building energy consumption

For Zero Energy Building (ZEB), it requires the building producing enough renewable energy that can totally cover the annual energy consumption requirement and thereby cutting down the non-renewable energy consumption. As for NZEB, the energy that consumed and generated are not fully equalled. Figure 3-10 shows the primary energy consumed and generated for each projects. Since some of the project don't have energy consumption monitoring data, Figure 3-10 contains 35 project energy consumption data.

During the energy consumption statistics, a key problem emerged that made the NZEB building consumption statistics rather complex.

According to the information collection template, the building primary energy consumption should point out whether the energy consumption covered Heating/Cooling, Lighting, and Plug load. The statistics show that not all the projects covered the Lighting and Plug loads. The primary energy consumption for some projects only refers to Heating/Cooling energy demand.

Figure 3-10 Energy balance chart for Net Zero Energy Buildings

CHAPTER 4 Passive Approaches to NZEB

4.1 Building envelope

The building envelope is the front line of the building's interface with the exterior environment and climate. This means it plays a critical role in the implementation of passive strategies, and so should be integrated with decisions about orientation and massing, as well as with mechanical and electrical system design. The building envelope must balance the needs for passive strategies such as daylighting and natural ventilation that require the climate to permeate the interior, with the need for integrity and performance from a thermal energy perspective. So the high performance building envelope is the first step and the critical element in NZEB building design^[20].

4.1.1 Walls and roofs

As for the largest external area of a building structure, roofs and walls are where most heat losses occurs. High performance envelope reduces heat loss in cold weather and keep out heat in hot weather. Figure 4-1 shows the roof U-value of the investigated NZEB best practices. During the investigation we found that the roof U-value that limited in the standards are various according to different economies, even different provinces or states, in the same economy.

Figure 4-1 Roof U-value of NZEB

Figure 4-2 shows the External Wall U-value of the investigated NZEB best practices. The red line shows the standard limited value. Nearly all the best practices can reach a much lower U – value for external roofs and walls.

It should be noted that the high performance building envelope has been proved to be a most efficient and economical way to reduce building heating and cooling load, thus to cut down the heating and cooling demands, especially for regions that with high HDD values. But choosing proper insulation is also critical. The U-value for Japan projects are much higher than other economies, and this may also one reason that the energy consumption of the projects much

higher than the others.

Figure 4-2 Wall U-value of NZEB

4.1.2 Windows

It is difficult to make windows and doors to have the same heat transfer capacity with roof and walls. Windows have an important impact on energy consumption. As is estimated, windows are most likely responsible for 5% to 10% of the total energy consumed in buildings. Comparing with walls, windows should keep the multiple functions, like outsight, entry of daylight, safeguarding, and ventilation, and at the same time, good insulation.

Figure 4-3 Window U-value of NZEB

One of the challenges for windows is to optimize the heat flow depending on the season. If the building is heated and the outdoor temperature is cold, the window should retain heat in the

building, minimize losses and let in as much solar radiation as possible. On the other hand, if the temperature inside the building is too hot and cooling is needed, the windows should keep out heat from the sun and if possible provide opportunities to shed heat from the building.

Figure 4-4 Window SHGC value of NZEB

The overall thermal performance of a building material or window is specified as thermal transmission (U value) and solar heat gain coefficient (SHGC). While the former is a measure of the rate at which heat passes through a component or structure when a temperature difference is maintained across the material; and the latter is the decimal expression of the percentage of incident solar radiation transmitted through glazing.

4.1.3 Air tightness

Air tightness is another directive item in NZEB envelope system, a good indication to the extent of air infiltration, the higher air tightness, the lower air infiltration. Air infiltration, like thermal bridging, is essentially thermal holes in the exterior building envelope. In the case of air infiltration, small gaps in the envelope can allow air to pass directly between the interior and exterior environments, causing either heat gain or heat loss, or both. Air movement through the envelope is caused by pressure differences that drive airflow. Pressure differences can be caused by wind, thermal stack effect, and indoor mechanical system, or a combination of these effects.

All NZEB should pass the blower door test apparatus which is a measurement for air infiltration and post-sealing effectiveness evaluation.

Figure 4-5 Air tightness design

It can be seen from Fig, that very airtight buildings may only have a rate of 0.2 ACH at 50 Pa, and they consequently require mechanical ventilation system to provide fresh air.

For those locations with high heating or cooling degree days, it is more efficient to air seal the buildings and to control the ventilation rate than to allow excessive air leakage. But for those locations with mild climate character, very airtight may not the economic choice.

4.2 Passive strategy

Minimizing heating and cooling needs requires an integrated view of building design. Sunlight is free, and maximizing its benefits to reduce heating and lighting needs is part of an integrated design. Similarly, thermal mass, insulation, shading, reflective surfaces and natural ventilation can help minimize heat gains in summer and thus energy needs for cooling^[21].

Passive Strategies	Heating	Cooling	Lighting
Air tightness	•	•	
Ground Cooling			
Natural Ventilation			
Passive Solar Heat Gain	•		•
Site Vegetation			
Skylight			•
Solar Tubes			
Sun shading			•

Table 4-1 Typical passive energy saving strategies ^[21]

Super insulation	•	
Thermal mass	•	
Thermal Zoning		

There are many available passive strategies, as well as numerous variations and hybrids derived from common designs. Generally, we can classified the passive strategies into four types according to the services: heating, cooling, ventilation, and lighting.

Figure 4-6 Passive Strategies adopted in projects

These design principles can significantly reduce heating and cooling loads at modest additional cost when constructing a new building.

For NZEB, passive strategies cannot be effectively integrated and must maximize combine architecture design, take very advantage of the building shape.

4.2.1 Passive heating

4.2.1.1 Thermal zoning

Thermal zoning is an important concept in HVAC system design, it is also the same vital in passive house design because a building will have a variety of thermal load and thermal need within the building, especially when the building is at a large enough scale.

Considering Thermal zoning meshing during NZEB design is an effective method of reducing heating/cooling energy demand. It should be adopted at the very beginning, even in the architectural plan. It can impact the program of the building and the use of passive design strategies.

4.2.1.2 Passive solar heat gain

Passive solar heating is one of several design approaches collectively called passive solar design. When combined properly, these strategies can contribute to the heating, cooling, and daylighting of nearly any building. The types of buildings that benefit from the application of passive solar heating range from barracks to large maintenance facilities.

Typically, passive solar heating involves:

- The collection of solar energy through properly-oriented, south-facing windows.
- The storage of this energy in "thermal mass," comprised of building materials with high heat capacity such as concrete slabs, brick walls, or tile floors.
- The natural distribution of the stored solar energy back to the living space, when required, through the mechanisms of natural convection and radiation.
- Window specifications to allow higher solar heat gain coefficient in south glazing.

Passive solar heating systems do not have a high initial cost or long-term payback period, both of which are common with many active solar heating systems. Increased user comfort is another benefit to passive solar heating. If properly designed, passive solar buildings are bright and sunny and in tune with the nuances of climate and nature. As a result, there are fewer fluctuations in temperature, resulting in a higher degree of temperature stability and thermal comfort.

4.2.1.3 Thermal mass

The building thermal mass provides some energy storage capacity by allowing moderate temperature fluctuations—the so-called passive energy storage. Trombe wall, together with many other ventilation functional walls are good application of thermal mass.

4.2.2 Passive cooling

When mentioning passive cooling, the most common way is to prevent solar heat entering the building constructer, such as sun shading and ground cooling. Among the 100 best practices, 100% of tropical area located projects adopted sun shading and only 6 projects that located in severe cold regions didn't have sun shading design.

Comparing to sun shading, ground cooling have a restriction on building scale. Among the 100 best practices, 19 small (under 500 m^2) or middle scale (under 2000 m^2) projects adopted ground cooling as passive cooling strategy.

4.2.4 Passive lighting

Daylighting design begins by understanding the lighting needs and the local conditions. Besides the passive solar heat design, passive lighting is another factor that for architecture to considerate. An innovative daylighting technology is now gradually adopted in NZEB projects worldwide---Solar tube (or sun tunnel). During the investigation, 15 projects adopted this

application, the further widely application may restricted by the expensive cost.

[Best Practice] Nearly Zero Energy Building in China Academy of Building Research

The Nearly Zero Energy Building in China Academy of Building Research (CABR) is located in Beijing, China, which was completed in July, 2015. This building adhered to the design principle of "passive building, proactive optimization, economic and pragmatic". An ambitious annual energy consumption goal of 25 kWh/(m²a) (including heating, cooling and lighting energy) was set during the design phase without compromise of building function and indoor environment quality. The demonstration project integrated best available building energy conservation technologies, striving to create a signature NZEB project and establishing the foundation for the development of China's NZEB standard.

Figure 4-7 Solar tube adopted in NZEB China Academy of Building Research

A Solar tube combined with auto-shading window system is installed in a conference room in 4th floor. Research regarding linkage control methodology and mechanism of solar tube and artificial lighting is carried out in this room. Approximately 500 lux light could be achieved on the surface of the table (Figure 4-7) in sunny days by measurement. With the combination of solar tube and artificial lighting, about 20% light energy saving could be achievable.

CHAPTER 5 Active Approaches to NZEB

If we take the passive approaches as the foundation for heating, cooling, ventilation, and lighting for a NZEB, then the active approaches are the security and necessity leading the building towards net zero. It is a combination between the design of passive strategies and renewable energy systems.

The experience with zero energy buildings shows that all energy uses in building must be examined and dry running to see if it has been reduced at the maximum extent. And the first step is to determine how energy will be used in the building, how many appliances will be set in the building. By analyzing the energy end use, it is not hard to see that energy efficient appliances is critical for paring down building energy demand.

Figure 5-1 Active Strategies adopted in projects

5.1 Heating and cooling source

Energy consumption for space heating and cooling accounts for over half of the total building energy use. For NZEB, this part of energy can be reduced to 15 kWh/(m^2a) with high efficient heating and cooling systems. The most used heating/cooling systems that applied in the 100 investigated projects can be summarized as follows:

5.1.1 Boiler

The efficiency of traditional boilers is usually not higher than 80%. For NZEB projects, condensing boilers and pellet boilers are the two kinds of most used boilers.

(1) condensing boiler

Condensing boilers are water heaters fueled by gas or oil. They achieve high efficiency (typically greater than 90% on the higher heating value) by condensing water vapor in the exhaust gases and so recovering its latent heat of vaporization, which would otherwise have

been wasted. This condensed vapors leaves the system in liquid form, via a drain.

[Best Practice] Xingfubao Passive Building

The Xingfubao Passive Pilot project is located in Urumqi City in north-west China which covers a treated floor area of 4317 m². Adopting high performance insulation and high air tightness, the annual heating demand of Xingfubao was reduced to 15 kWh/m^2 . The condensing boiler is taken as the auxiliary heating system that can provide

Figure 5-2 The Xingfubao Passive Project

(2) Pellet heater/boiler

The pellet heater is a boiler of stove that burns compressed wood or biomass pellets to create a source of heat for residential and sometimes industrial spaces. By steadily feeding fuel from a storage container (hopper) into a burn pot area, it produces a constant flame that requires little to no physical adjustments. Today's central heating systems operated with wood pellets as a renewable energy source can reach an efficiency factor of more than 90%.

[Best Practice] Zero Carbon Green Home

Zero Carbon Green Home (ZCGH) is one of the zero energy building pilot projects in Korea. With the integration of passive and active design, ZCGH was able to achieve its goal of 87% reduction in heating energy consumption and 85% reduction in electricity consumption, which resulted in 82% savings in annual heating costs and 91% savings in electricity costs^[22].

Figure 5-3 Zero Carbon Green Home (ZCGH), Republic of Korea

In order to supply space and water heating respectively for all 15 units in the building, two 50kW wood pellet boilers were installed. The wood pellets, with a calorific power of 5.2 kWh/kg, are considered CO2 free. Up to two tons of wood pellets can be stored, and they are supplied through an automatic transportation feeder, which is able to provide a maximum consumption of 12 kg per hour. Indoor space heating is provided through underfloor heating. This system is only 1/5 the capacity of conventional apartment buildings.

Figure 5-4 Pellet boiler and storage in ZCGH^[22]

5.1.2 Heat pump

Heat pumps are a particularly important technology for NZEB to reach net-zero energy status

in an efficient way. The heat source/sink can be the air or the ground, or the water. Among the 100 best practices, 18 projects adopted air source heat pump, 23 projects adopted ground source heat pump, and 8 projects adopted water source heat pump.

[Best Practice **]** EcoTerra house

EcoTerra^[23] is a two-story, two-bedroom, net-zero energy house located near Montreal in the rural town of Eastman, Ouebec, Canada (Figure 5-5). It is the first of 15 demonstration houses that was selected to be built through a competition under the Canada Mortgage and Housing Corporation (CMHC) Equilibrium Healthy Housing Initiative. EcoTerraTM was designed with a number of innovative technologies including a building-integrated photovoltaic system with thermal energy recovery and a hollow-core slab in the basement for thermal storage, passive solar design and a ground source heat pump. The local climate there is characterized by cold sunny winters and warm humid summers with moderate daily temperature swings. Passive solar design is maximized with the south-facing window-to-wall ratio of about 40%. Several fixed and movable shading devices were installed to help control unwanted solar gains particularly in the summer and shoulder seasons. The southern zone of the house's interior has concrete floor and knee walls on the main level and basement to provide thermally massive surfaces to regulate high levels of solar gains to prevent large temperature swings. EcoTerra has a 55 m² BIPV/T collector on the upper part of the roof with a total PV array peak capacity of 2.8 kW. The heated air from the BIPV/T roof was designed for three possible uses: 1) space heating by charging the ventilated concrete slab in the basement, 2) pre-heating domestic hot water using an air-to-water heat exchanger, and 3) drying clothes in a conventional clothes dryer that was modified to receive heated air in fan mode without electric heating.

To supplement the heating contribution from the passive solar heat gains and the BIPV/T system, the EcoTerra house includes a two-stage ground-source heat pump with an 11.1 kW thermal output capacity. The coefficient of performance (COP) of the GSHP was measured to be 3.5-4.0.

Although ÉcoTerra[™] did not reach net-zero energy consumption, it consumes only 26.8% of the energy of a typical Canadian home and had an energy density of only 18.1% of the national average. ÉcoTerra[™] uses only 8.9% of the heating energy per unit area of a typical Canadian home. This is primarily due to the significant effort put into the passive solar design of the house, but is also due to the contribution of the ground source heat pump and thermal energy collected by the BIPV/T roof.

Figure 5-5 The Eco Terra House. Canada

For now, more efficient heating/cooling equipment are available and becoming more and more cost-efficient. Table 5-1 gives some of the heating technologies together with their cost and efficiencies.

category	efficiency	Typical capital cost	Fuels	Operating cost
Conventional boilers	60-84	Low-medium	oil, natural gas	medium-high
Condensing boilers	85-97	Medium	oil, natural gas	medium-high
Pellet Boiler	75-85	Low-medium	Biomass	Low-medium
Masonry heaters	80-90	Medium	Biomass	Low-medium
Heat Pump (electricity)	200-600	Low-medium	Electricity	Low-medium
Heat Pump (gas driven)	120-200	medium-high	Gaseous fuels	Low-medium
Sorption Chillers	70-180	Medium	Natural gas, solar	medium-high
Solar thermal	100	Low - high	Solar	Low-medium

Table 5-1 Existing heating technologies together with their cost and efficiencies^[21]

5.2 HVAC system

5.2.1 Radiant technology

Radiant heating and cooling systems have been successfully used for nearly 30 years. According to the existing research, the radiant heating and cooling can offer lower energy consumption than conventional heating and cooling systems. Much of the energy savings is also attributed to the

lower amount of energy required to pump water as opposed to distribute air with fans. By coupling the system with building mass, radiant cooling can shift some cooling to off-peak night time hours. Radiant cooling appears to have lower first costs [24] and lifecycle costs compared to conventional systems. Lower first costs are largely attributed to integration with structure and design elements, while lower life cycle costs result from decreased maintenance. However, a recent study on comparison of VAV reheat versus active chilled beams & DOAS challenged the claims of lower first cost due to added cost of piping [25].

(BEST PRACTICE) The Bullitt Center

The Bullitt Center is a $4,800 \text{ m}^2$ treated floor area commercial building located in Capitol Hill, Seattle, United States. The building is designed with the goal of the greenest commercial building in the world (Figure 5-6).

Figure 5-6 The Bullitt Center, United States

The high efficient ground-source heat pump and in-floor radiant system heat the building extremely efficiently. Five heat pumps converts 11° C water from underground tubes to 35° C for heating the building with radiant heat system (Figure 5-7).

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building

Figure 5-7 The high efficient GSHP and in-floor radiant system in Bullitt Center

5.2.2 Displacement ventilation

Displacement ventilation is a room air distribution strategy where conditioned outdoor air is supplied at a low velocity from air supply diffusers located near floor level and extracted above the occupied zone, usually at ceiling height.

[Best Practice] The Seoul Energy Dream Center

The Seoul Energy Dream Center is located in Sangam-dong, Seoul, Republic of Korea, with treated floor area 3762 m². The building and its diamond-shaped architecture aims to teach citizen the importance of energy savings, sustainable architecture and center for renewable energy (Figure 5-8).

Figure 5-8 Seoul Energy Dream Center. Republic of Korea

Displacement ventilation is considered as an energy saving approach compared to standard

mixing ventilation, especially for high inner space building. However, this may also a cause of discomfort due to the large vertical temperature gradient and drafts. The three story building structure extends upwards and outwards at a 45 degree rotation, topped off by a square roof. Wedge-shaped roof projections are mounted along the façades at an upward tilt – helping increase the upper air flow of inner space, thus to eliminate discomfort.

5.2.3 Mechanical Air heat recovery

Mechanical Air heat recovery is an energy recovery ventilation system using equipment known as a heat recovery ventilator, heat exchanger, air exchanger, or air-to-air heat exchanger which employs a cross flow or counter-flow heat exchanger (countercurrent heat exchange) between the inbound and outbound air flow. HRV provides fresh air and improved climate control, while also saving energy by reducing heating (and cooling) requirements for many applications including vehicles.

[Best Practice **]** Shenyang Jianzhu University Sino-German Passive House

Shenyang Jianzhu University Sino-German Passive House is the first self-designed and built with three star green building. It is also the first Net Zero Energy demonstration building in Liaoning Province in China (Figure 5-9).

Figure 5-9 Shenyang Jianzhu University Sino-German Passive House. China

The ground cooling system together with the mechanical air heat recovery system save 1600 kWh electricity for air condition with the efficiency at 72% (Figure 5-10).

Figure 5-10 The ground cooling system together with the mechanical air heat recovery system

5.3 Lighting

Lighting becomes a major energy consumer after the reduction of heating and cooling demand in NZEB. The good news is that through improved use of natural lighting and adoption of highly efficient lamp technologies, the final power consumption for lighting can be decreased to a very low level and still has significant potential a lower one.

One of the advantages of energy efficiency improvement for lighting is that it is the easiest approach to achieve by renewable energy. Among the 100 best practices, nearly half of the project can solve the lighting energy consumption by photovoltaic.

Another efficient way to achieve highly efficient lighting is the solar tube which is nowadays considered to be modern devices that used at residential or public buildings. Solar tube are easily installed and can provide strong natural light during the day with their special light capturing mirrors and lenses. They can intensify light even with clouds or placement in less than optimum locations.

The nearly zero energy building (NZEB) at the China Academy of Building Research (CABR) is located in Beijing, China with the design principle of "passive building, proactive optimization, economic and pragmatic". The power provided by PV system goes to serve public area lighting firstly if required, and more for the internet. (Figure 5-11).

Figure 5-11 PV panel system serves public area lighting

5.4 Advanced control

Advanced control for NZEB here refers to the load management control system and the lighting system. Load management, also known as demand side management (DSM), is the process of balancing the supply of electricity, together with other mechanical systems on the network with the electrical load by adjusting or controlling the load rather than the power station output. This can be achieved by direct intervention of the utility in real time.

A lighting control system is an intelligent network based lighting control solution that incorporates communication between various system inputs and outputs related to lighting control with the use of one or more central computing devices. Lighting control systems are widely used on both indoor and outdoor lighting of commercial, industrial, and residential spaces. Lighting control systems serve to provide the right amount of light where and when it is needed.

5.4.1 Energy system control

By achieving a Minuscule heating and cooling load and pleasant indoor environment, the Energy system turns to be hot research topic in the passive house or nearly zero energy buildings. Load management, also known as demand side management (DSM), is the process of balancing the supply of electricity on the network with the electrical load by adjusting or controlling the load rather than the power station output. Load management allows utilities to reduce demand for electricity during peak usage times. The design of BIPV and Solar thermal, together with other renewable energy system application should pay more attention to balance the peak load.

CABR NZEB Energy system design and operation is an exploration of integrated design and is expected to give an effective solution of energy system design for nearly zero energy buildings in China. The integrated energy system requires more intelligent load management and the application of Building Automation system (BAS^[26]) shows a successful example in building energy management system (Figure 5-12).

Figure 5-12 Integrated energy system

5.4.2 Lighting system control

When talking about advanced lighting control technology, Power over Ethernet (POE) is considered to be an efficient option for saving power consumption for lighting.

One of the successful application of POE in lighting control is the lighting system in CABR. LED and fluorescent lamps are installed in different floors, and two control brand with several control methodologies are applied in different floors and different lamps. Power over Ethernet (POE) with Led is applied and tested in one office room in the fourth floor, which in a connected lighting system, every luminaire is directly connected to and uniquely identified within a building' IT network, allowing system managers to monitor, manage and maintain individual light points via lighting management software. This system is the second application of POE in Asia region, which shows great research value for application of Direct Current in the lighting system (Figure 5-13).

Figure 5-13 Lighting Control System adopted in NZEB in China Academy of Building Research

CHAPTER 6 Renewable Applications in NZEB

The renewable energy generation systems and technologies that integrated in NZEB commonly refer to Solar Power system, solar thermal system, Wind power system, combined heat and power system, and the heat pump system. We take this most common five renewable applications into investigation.

Figure 6-1 Renewable applications in NZEB

6.1 Solar power

Solar power usually refers to building-integrated photovoltaic (BIPV) which is a photovoltaic module that is architecturally and functionally integrated into the building envelope.Comparing to Wind power system, BIPV owns a wider range of applicability.

[Best Practice] Concordia University's John Molson School of Business building

The Concordia University's John Molson School of Business building(JMSB) is a 37,000-square-metre 15-storey landmark and its Solar Wall system is a successful example of BIPV application in building envelope.

Figure 6-2 JMSB Solar Wall^[27]

Figure 6-3 Detail showing attachment of PV modules and airflow paths around the bottom frame of a PV module and into the transpired collector.

The John Molson School of Business (JMSB) building-integrated photovoltaic/thermal (BIPV/T) solar system and was the first of its particular configuration in the world when it was built. It consists of specially designed photovoltaic panels optimally combined with perforated wall cladding through which much of the ventilation air of the building is drawn as solar-heated fresh air. Essentially, from one building surface with an area of about 288 square metres, the system generates both solar electricity (up to 25 kilowatts) and solar heat (up to 75 kW of ventilation fresh air heating). The 288m² system also forms the exterior wall layer of the building. This is the first time that a major building-integrated combined solar electric and thermal system has been implemented in a new institutional building in such a prominent location. The system is optimally located because the surface is close to south-facing and the building mechanical room with the ventilation system is right behind the façade so that the solar-heated ventilation air can be utilized in a cost effective manner.

The thermal energy extracted by the BIPV/T system is a contribution of two sources. For about 70% of the solar facade, air is heated by circulating behind the relatively warm solar panels, whereby the Unglazed Transpired Collector (UTC) is used uniquely for PV support and preheated air extraction. The other portion comes from direct solar heat extraction from the exposed UTC surface. In order to maximize the heat recovered from the integrated PV and UTC technologies, many design techniques were used.

The transpired collector used in the prototype is black galvanized steel with a porosity of 0.6% and installed with the corrugations running horizontally to facilitate closing of a gap between the upper frame of the PV panel and the UTC, so as to reduce heat losses by natural convection, while inducing turbulence behind the panels and increasing mixing in comparison to vertically oriented corrugations. Thus, airflow behind the PV modules is possible through the bottom and the sides. The top portion of the JMSB façade was left uncovered to promote buoyancy driven

cooling of both the plenum and the modules in summer.

To increase the effective solar absorptance of the panel (including the area between cells), black PV module backsheet was selected in addition to black aluminum frame. Such modifications yield an area-weighted (including framing) average module normal solar absorptance of 92% as compared to 85% for their traditional lighter coloured counterpart, which improves the thermal efficiency.

Another important design parameter was the sizing of the photovoltaic module. Although greatly dictated by the cell sizes available in the industry, a long narrow rectangular module was chosen to reduce vertical temperature stratification of the air in the cavity between the PV panel and the UTC. This reduces the PV operating temperature and facilitates flow of air from behind the PV into the UTC. Finally, the upper edge of the PV modules was mounted directly against the UTC cladding. This was done to minimize the escape of heated air through a potential gap between the top frame of the panel and the transpired collector cladding (Fig.6-3).

The combination of UTC and PV solar technology was optimized using the above techniques and achieved a thermal efficiency of about 40% measured under high solar radiation and wind speeds below 1 m/s in winter time. A DC efficiency of 11.3% was achieved based on measurements in 2011.

[Best Practice] Varennes Net Zero Energy Library

The Varennes library is the first solar net-zero energy institutional building in Canada.

Figure 6-4 Varennes Library (roof BIPV is part BIPV/T).

NSERC SNEBRN, through Concordia University's Centre for Zero Energy Building Studies (CZEBS) provided support and guidance in the early design of the building and helped set the goals such as achieving net-zero energy annual energy consumption through a building-integrated solar system. The library was inaugurated on May 16th, 2016, achieved LEED Gold certification, won an Award of Excellence in Real Estate for Innovation from the Urban Development Institute of Quebec and won an Award of Excellence from the Association of Consulting Engineering Companies of Canada.

The library has two floors and a total floor area of 2017 m². The library has a 126 kW roofmounted building-integrated photovoltaic (BIPV) array with a slope of 38° oriented South to South-East. Over the total 711 m² PV area, 428 m² is naturally vented through a 150 mm air gap between the PV panels and the metal roofing. The remaining 280 m² is fan-assisted and vented through a 75 mm air gap. Heat generated from BIPV/T is connected to Heat Recovery Ventilator to preheat the fresh air. A total of 220 kWh solar heat can be harvested for a typical cold sunny day in February from 110 m² BIPV/T section and peak combined thermal plus electrical efficiencies of 60% have been observed. Other features include motorized windows, radiant floor heating, geothermal heat pump, natural cross ventilation, and daylighting control. The operation of the library is intensively instrumented and being studied through a NSERC/Hydro Quebec Industrial Research Chair held by Dr Athienitis. Its interaction with the electricity grid is also being optimized through predictive control.

Figure 6-5 Major building energy systems in the Varennes Library illustrated in a building cross section schematic

6.2 Solar thermal

Solar thermal is an efficient way to convert solar energy into useful energy. A solar thermal collector can be over three times more efficient than photovoltaic systems in converting radiant energy into useful energy.

Domestic hot water is one of the most effective and common uses for solar thermal, because the load is typically relatively small and constant year-round.

[Best Practice **]** Orient Sundar Experts Apartment

The NZEB project Orient Sundar Experts Apartment is located in Hebei Province in China with 8.642 m² net floor area (Figure 6-6). The solar thermal domestic hot water system can provide 80L water per person per day (Figure 6-7).

Figure 6-6 Orient Sundar Experts Apartment. China

Figure 6-7 Solar thermal domestic water system

[Best Practice] Nearly Zero Energy Building of CABR

Another application of solar thermal is taken as the heating source of air conditioning system. The solar thermal air- conditioning system in CABR Nearly Zero Energy Building is recognized as the biggest solar thermal air- conditioning system in Asia area, provides the ventilation load, supplemented by a 50kW GSHP unit in summer season. The other 100kW GSHP unit is in place to meet both heating and cooling demand from the radiant terminals for the second and third floor. Coupled with ground source heat pump, the solar collection systems provide direct heating in winter with thermal storage. The organization of the energy plant is shown in Figure 6-8~6-10. Energy plant is very well organized, each equipment and pipe orientation are very well tagged with different colors.

Figure 6-8 High-temperature solar collector

Figure 6-9 Median-temperature solar collector

Figure 6-10 Absorption chiller and heat pump system

6.3 Wind

The kinetic energy of the wind is a powerful renewable energy resource that is available all the time—day and night, as long as the wind is blowing. The wind blows moving the turbine and convert the kinetic energy into useful energy and this requires a special range of average wind speed^[28].

So it is not possible for all the NZEB to adopt this technology. Among the 100 best practices, only 3 demonstrations adopted wind power system.

[Best Practice] Wind NRG Partners, LLC

Wind NRG Partners, LLC is a new manufacturing facility which is located in Hinesburg, United States. The integrated design was based on using sustainable design as the core organizing principle for the project. The owner, architect, and entire design team, including energy, lighting, and sustainability consultants, shared this commitment and goal. The 10-kW wind turbine can provide the 4,320 m² building with 5000 kWh per year.

Figure 6-11 Wind NRG Partners, LLC, United States

6.4 Combined heat and power

Combined heat and power (CHP), also called cogeneration, is the process of taking advantage of the inefficiency built into the process of generating electricity. According to the statistics, nearly 50-60 per cent of the energy will be released directly into atmosphere during power generation process. And the CHP system would lift the efficiency of energy use up to 70-80%.

CHP has been widely used in building heating system worldwide for more than 20 years which is not an innovative technology for NZEB. The application of CHP usually requires the architecture quite near with a power station. But for NZEB, this can turn out to be a boilermicro grid combined small scale CHP system. Among the 100 best practices, only 1 project adopted this technology which CHP system was design by using gasification pellet boiler connected to Micro Grid.

CHAPTER 7 Economic Analysis of NZEB

The incremental cost of NZEB is for now the biggest obstacle for marketization. Aggressive measures and policies to encourage renovation and energy efficiency improvements need to be implemented to dramatically improve the energy efficiency of existing buildings. This will require significant upfront investment, and their economics will depend heavily on energy prices.

7.1 Financial considerations

Typically, NZEB require reduction of space heating and cooling load through building envelopment improvements, direct solar exposure through good orientation, and energy demand reduction through selection of high efficient appliances and space conditioning equipment before utilization of renewable energy sources can be considered viable.

Despite the added benefits, the incremental cost continues to be a significant deterrent for majority market.

Figure 7-1 Comparison of NZEB cost and standard building cost

According to the investigation, one-third of the project can control the increment cost within 50%, and there are 6 project which increment cost are over 100% of the typical same kind building.

7.2 Incremental cost allocation

Seldom project owners can ignore the incremental cost of NZEB and an explicit analysis on increment cost allocation was conducted during the investigation. Since it is hard for all the project owners to list the allocation, Figure 7-2 show the incremental cost allocation for 22 investigated projects.

Figure 7-2 Incremental cost allocation

From the allocation investigation, passive approaches accounts for the largest part of the increment cost. This is partially because that passive approaches are usually the basic and first step of NZEB design. Some NZEB project can reach the Net Zero even without renewable energy system or control system.

Capital Sources of projects

Figure 7-3 Capital Sources of projects

Among the capital sources, self-fund is the major part and 16 projects are fully self-fund support. 21 projects obtain governmental subsidy and four of them are fully governmental subsidy support. Among the 11 donation/industry support projects, 3 of them are totally from the in kind support.

CHAPTER 8 Conculsions

Accounting for around 60 percent of world energy demand, the APEC region is a net energy importer and its demand for energy is increasing rapidly. Recently, some APEC developed economies set the goal to achieve Nearly (Net) Zero Energy Building (NZEB) and already launched national policy and objective in the future 2020, 2030 and 2050.

This report integrated existing information collection forms and templates on NZEB /high performance projects databases and investigation institutes. The APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template was developed upon the integration. Based upon this template, the project conducted an APEC 100 Best NZEB Practices investigation and more than 100 projects was collected. This report shows a comparative analysis of the 100 selected NZEB projects, analyzing on NZEB promoting policies, technical approaches, building increment cost and other NZEB related points.

The investigation shows a good performance on NZEB practices. Among the 100 investigated best projects, 63 projects provided their annual energy consumption and annual renewable energy generation. 28 projects control their annual energy consumption below 120 kWh/(m2a) and 36 projects can achieve the "zero" balance.

During the investigation we find that the difference existed in the energy consumption energy consumption statistics. The total energy consumption investigated in the Japan Projects includes: Heating/Cooling, lighting, and plug load while during the investigation for Canada, Hong Kong, China, and Republic of Korea, the plug load are usually not included. For the projects in China, both of the situations are available. This made the energy consumption statistics hard to compare in the same condition and a unified measurement method on annual energy consumption calculation should be urgently needed.

The U-values of roofs, walls, and windows of the investigated projects are lower than their local building standards. Taking United States for example, the average U-value of investigated NZEB projects is 0.29 W/(m2K) while the standard requirement is 0.88 W/(m2K). The lowest standard requirement is Canada, which is 0.4 W/(m2K) and the average investigated value is 0.22 W/(m2K). During the 33 Chinese projects, the average U-value of external wall is 0.29 W/(m2K) while the requirement in China's latest energy saving standard is 0.6 W/(m2K).

Air tightness is another directive item in NZEB envelope and 92% of the projects achieved the 0.6 ACH at 50Pa requirement.

Among the 100 NZEB best practices, skylight and natural ventilation are the most commonly and economic passive approaches that 85 projects adopted. Passive solar heat gain is considered to be another vital approach for cold climate that 43 project considered this during the design process. Although solar tube and ground cooling are considered to be more expensive and have a limitation on building size, they are still more and more widely used especially in recently projects.

As for active approaches, energy efficient lighting should be the first considered approach since this can greatly reduce energy consumption without big incremental cost. 89 projects adopted efficient lighting and 69 of them adopted advanced lighting control systems. The mechanical air heat

recovery system is considered most valuable in extremely hot and cold regions and 56 project applied. Besides, the radiant technologies and heat pump technologies are also treated as the security and necessity leading the building towards net zero.

The incremental cost of NZEB is for now the biggest obstacle for marketization. Aggressive measures and policies to encourage renovation and energy efficiency improvements need to be implemented to dramatically improve the energy efficiency of existing buildings. It's great to see that during the 100 projects, 21 project are fully or partly governmental-funded and 6 projects acquired incentives as the capital sources. Among the 100 NZEB best practices, 78% of the projects control their incremental cost below 50% and still there are 9 projects which incremental cost is over 90%. With the industrial upgrading, we have every reason to believe that the incremental cost for NZEB will be greatly reduced in the near future and NZEB will be finally the most appropriate way to improve building energy efficiency and reduce carbon emission for building sector.

References

- [1] The United Nations. UN Climate Change [EB/OL]. [2016-12-27]. http://newsroom.unfccc.int/.
- [2] APEC. APEC High-Level Urbanization Forum 2016 [EB/OL]. [2016-12-27]. http://mddb.apec.org/Documents/2016/SOM/SOM1/16_som1_013.pdf.
- [3] Tianjin Innovative Finance Low Carbon Institutes. Research Report on Low Carbon Model Town Capacity Building Development[R]. APEC, 2013.05.
- [4] Natural Resources Canada (NRCan) 2006. Energy Use Data Handbook. Government of Canada.
- [5] CMHC. The EQuilibrium[™] Sustainable Housing Demonstration Initiative [EB/OL].
 [2014-11-10]. http://www.cmhc.ca/en/inpr/su/eqho/eqho_008.cfm.
- [6] Energy Conservation Center, 2013.Handbook of energy & economic statistics in Japan[M]. A common definition
- [7] National Archives and Records Administration. (2007). Executive Order 13423— Strengthening, Federal Environmental, Energy, and Transportation Management. (FR Doc. 07–374). Washington, DC: The White House.
- [8] Cassidy R, Schneider J W. (2011). Zero and Net-Zero Energy Buildings + Homes. Alexandria, VA: North American Insulation Manufacturers Association. http://www.bdcnetwork.com/sites/default/files/Zero%20and%20Net-Zero%20Energy%20Buildings%20%2B%20Homes.pdf
- [9] Shawna Henderson, Chris Mattock. 2007. Approaching Net Zero Energy in Existing Housing.
- [10] California Energy Commission. (2011). Revised Zero Net Energy (ZNE) Definition. IEPR Workshop, California Energy Commission, JULY 20, 2011.
- [11] Natural Resources Canada.Federal Buildings Initiative [EB/OL]. [2014-11-10]. http://www.nrcan.gc.ca/energy/efficiency/communitiesinfrastructure/buildings/federal/4481.
- [12] Canada Mortgage and Housing Corporation (CMHC), 2007. On Average, Households Across Ten MajorCentres Spent More Than \$11,000 on Renovations in 2006. Retrieved on September 5, 2007 from CMHC
- [13] SNEBRN, 2012, Smart Net-Zero Energy Buildings Strategic Research Network. www.solarbuildings.ca
- [14]Yang L, Yan H, Lam JC. Thermal comfort and building energy consumption implications–a review. Appl Energ 2014; 115: 164-173.
- [15] Cai WG, Wu Y, Zhong Y, et al. China building energy consumption: situation, challenges and corresponding measures. Energy policy 2009; 37(6): 2054-2059.

- [16] China Academy of Building Research. GB50178. Standard for Climatic Region Divison for Civil Engineering. Beijing: China Planning Press, 1993.
- [17] Kurnitski J, Saari A, Kalamees T, et al. Cost optimal and nearly zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB national implementation. Energy aBuild 2011; 43(11): 3279-3288.
- [18] Wei Xu, Deyu Sun, Zhijian Liu, Yilin Li. Study of the performance criteria system of passive nearly-zero energy buildings in China[J].XXX, 2016(15).
- [19] IEA. Energy Policy for Net Zero Energy building[EB/OL].[2016-12-27]. https://www.iea.org/policiesandmeasures/pams/japan/name-30693-en.php.
- [20] Tom Hootman.Net Zero Energy Design[M].First Edition.Canada: jOHN wILEY & Sons, Inc, 2013.
- [21] IEA.Transition to Sustainable Buildings[M].First Edition.International Energy Agency, 2013.
- [22] KICT.Zero Carbon Green Home[EB/OL].[2016-12-27]. http://www.greenpostkorea.co.kr/news/article.html?no=39887.
- [23] Andreas Athienitis. William O'Brien.Modeling, Design, and Optimization of Net-Zero Energy Buildings[M].1.Whilhelm Ernst & Sohn, Verlag, 2015.
- [24] Mumma, S.A. (2002). "Chilled ceilings in parallel with dedicated outdoor air systems: Addressing the concerns of condensation, capacity, and cost". ASHRAE Transactions. 108(2): 220–231.
- [25] Stein Jeff; Steven T. Taylor (2013). "VAV Reheat Versus Active Chilled Beams & DOAS". ASHRAE Journal. 55 (5): 18–32.
- [26] Annunziata E, Frey M, Rizzi F. Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe. Energy 2013; 57: 125-133.
- [27] JMSB. JMSB Solar Wall [EB/OL]. [2016-12-19]. <u>http://www.concordia.ca/content/dam/</u>concordia/docs/quartier-concordia/Solar_PanelsENG.pdf.
- [28] Wikipedia.Wind power[EB/OL].[2016-12-27].https://en.wikipedia.org/wiki/Wind_power.

Number	Economy	Project Name	Location	Building Type	Net Floor Area (m ²)
1	Australia	Swanston Academic Building (Building 080)	Melbourne	School	34,325
2	Australia	Pixel Building	Victoria	Museum	1,136
3	Canada	Landmark	Edmonton	Residential	313
4	Canada	Valley Waste ResourceManagement Authority Office		Office	743
5	Canada	Varennes NZEB Library	Varennes, QC	Library	2,017
6	Canada	EcoTerra	Eastman, QC	Residential	230
7	Canada	Rideau Residence	Ottawa, Ontario	Residential	329
8	Canada	Solterre ConceptCottage Retreat	Lunenberg, Nova Scotia	Residential	139
9	Canada	John Molson School of Business	Montreal	Office	
10	People's Republic of China	Xingfubao Passive House	Urumqi	Office	7,791
11	People's Republic of China	Cuicheng Disabled Rehabilitation Center	Beijing	Training Center	2,519
12	People's Republic of China	Orient Sundar Experts Apartment	Gaobeidian	Residential	8,016
13	People's Republic of China	The Green Lighthouse	Nanjing	Museum	5,100
14	People's Republic of China	The Garden Home	Tianjin	Residential	10,901
15	People's Republic of China	The Quancheng Park Relief Command Center	Jinan	Multi-purpose	942

AppendixI100 NZEB Best Practices List

Number	Economy	Project Name Location		Building Type	Net Floor Area (m ²)
16	People's Republic of China	Beihang Science Park	Yantai	Plant	3,042
17	People's Republic of China	Hebei Academy of Building Research Sino-German Passive House	Shijiazhuan g	Office	14,527
18	People's Republic of China	Zhongtian Material Depot	Chengde	Multi- purpose	8,315
19	People's Republic of China	Shenyang Jianzhu University Sino-German Passive House	Shenyang	Office	1,600
20	People's Republic of China	Municipal Party School	Weihai	Multi- purpose	15,919
21	People's Republic of China	The City College of Jilin Jianzhu University	Changchun	Multi- purpose	1,187
22	People's Republic of China	CABR Nearly Zero Energy Building	Beijing	Office	4,025
23	People's Republic of China	TENIO Green Office	Tianjin	Office	5,756
24	People's Republic of China	Qingdao Eco Park	Qingdao	Office	13,769
25	People's Republic of China	Shandong Urban Construction Vocational College	Jinan	Multi- purpose	21,428
26	People's Republic of China	Velux Office Building	Langfang	Office	2,014
27	People's Republic of China	Tianyou Green Design Center	Tianjin	Residential	5,756
28	People's Republic of China	Tibet Chengfa Energy saving building material Office	Tibet	Office	2,612

AI LC IU	APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building						
Number	Economy	Project Name	Location	Building Type	Net Floor Area (m²)		
29	People's Republic of China	Zibo Linzi Health nursing home	Zibo	Residential	4,645		
30	People's Republic of China	UNIDO Net Zero Energy Building	Lanzhou	Office	13,976		
31	People's Republic of China	Wenhui Innovation Center	Tianjin	Hotel	7,919		
32	People's Republic of China	Changpeng Car decoration manufacturing Office	Dingzhou	Office	2,859		
33	People's Republic of China	Binhai New Area Community Cultural Activity Center	Tianjin	Multi- purpose	9,685		
34	People's Republic of China	Tianjin Eco-City Public House Phase II	Tianjin	Residential	5,802		
35	People's Republic of China	Chengjian Kingdergardon	Weihai	School	5,647		
36	People's Republic of China	The Home of Future	Weifang	Office	2,287		
37	People's Republic of China	Zhongsen Honggu Yipin Kindergarden	Nanchang	School	3,882		
38	People's Republic of China	Water Front Zero Energy Home	Qinhuangda o	Residential	6,718		
39	People's Republic of China	CCT TECH Net Zero Energy Building	Chengdu	Office	4,409		
40	People's Republic of China	Shoukai BrownStone Net Zero Energy Building	Xiamen	Residential	1,500		

Number	Economy	Project Name	Location	Building Type	Net Floor Area (m ²)
41	People's Republic of China	Sheng Rong Eco Kindergarden	Dongguan	School	3,400
42	People's Republic of China	Landsea Bruck zero Energy building	Huzhou	Office	2,445
43	People's Republic of China	CIFAL Training Center	Zhenjiang	Office	12,786
44	Hong Kong, China	Zero Carbon Building	Hong Kong	Office	3,305
45	Japan	Kawagoe town hall	Mie Pref	Public Service	9,534
46	Japan	Kajima Technical Research Institute building	Tokyo	Institute	9,000
47	Japan	OT building	Tokyo	Office	5,500
48	Japan	SH building	Tokyo	Office	51,800
49	Japan	IN building	Tokyo	Office	104,000
50	Japan	Taisei Sapporo Building	Sapporo	Office	7,000
51	Japan	Itoman City hall	Okinawa Pref.	Public service	15,435
52	Japan	Tochigi Prefectural Government	Tochigi Pref.	Public service	97,954
53	Japan	HL building	Tokyo	Office	7,700
54	Japan	21 Komaba Center for Educational Excellence building	Tokyo	Multi- purpose	4,477

Number	Economy	Project Name	Location	Building Type	Net Floor Area (m ²)
55	Japan	KB building	Kobe	Office	23,500
56	Japan	OI building	Kanagawa Pref.	Office	44,488
57	Japan	Taisei's ZEB	Yokohama	Office	1,277
58	Japan	Unnan City hall	Shimane Pref.	Public service	7,628
59	Japan	MN building	Yamanashi Pref.	OFFICE	8,154
60	Japan	SK building	Tsukuba	Public service	2,258
61	Japan	YM building	Osaka	Multi- purpose	12,563
62	Japan	Hokusetsu Office of The Kansai Electric Power Co., Inc	Osaka	Office	8,453
63	Japan	Akasaka K Tower building	Tokyo	Office	53,777
64	Japan	TC building	Tachikawa City	Office	10,603
65	Republic of Korea	Zero Carbon	Goyang-si	Residential	1,273
66	Republic of Korea	Seoul Energy Dream Center	Seoul	Office	3,762
67	Republic of Korea	All Electric House	Daejeon	Residential	157
68	Republic of Korea	NIER	Inchon	exhibition	1,928
69	Republic of Korea	Geoje Ok-sanli Residential building	Geoje	Residential	93
70	Republic of Korea	Jinchun Zero-Energy Town House (100 Houses)	Jinchun	Residential	145.75 × 100 units

Number	Economy	Project Name	Location	Building Type	Net Floor Area (m²)
71	Republic of Korea	Odae Mt. Korea National Park kyebangsan Branch Office	Pyeongchan g	Office	105
72	Republic of Korea	PHIKO No. 2	Namwon	Residential	99
73	Republic of Korea	On-Yang 6 dong Community Service Center	Asan	Office	1,465
74	Republic of Korea	Seongnam Sampyeong- dong	Seongnam	Office	420
84	People's Republic of China	Post Office	Tianjin	Residential	5,756
75	Singapore	Building and Construction Authority Zero Energy Building Braddell Road Campus	Singapore	Office	4,500
76	Chinese Taipei	ITRI Central Campus Cafeteria	Nantou	Café	793
77	United States	Bullitt Center	Seattle	Office	4,800
78	United States	Chrisney Library	Chrisney	Library	223
79	United States	Environmental Tech. Center Sonoma State	Rohnert Park	Library	204
80	United States	Hawaii Gateway Energy Center	Kailua- Kona	Multi- purpose	334
81	United States	Leslie Shao-Ming Sun Field Station	San Mateo County	School	1,230
82	United States	Oberlin College Lewis Center	Oberlin	School	1,263
83	United States	Omega Center for Sustainable Living	Rhinebeck	Multi- purpose	576
84	United States	The Putney School Net Zero Energy Field House	Putney	School	1,560
85	United States	Science House at the Science Museum of Minnesota	St. Paul	Museum	142

Number	Economy	Project Name	Location	Building Type	Net Floor Area (m ²)
86	United States	Woods Hole Research Center	Falmouth	Library	1,784
87	United States	Wind NRG Partners Manufacturing Facility	Hinesburg, VT	Multi- purpose	4,320
88	United States	NREL Wind Site Entrance Building (SEB)	Lousiville, CO	Multi- purpose	15
89	United States	Eco Office	Atlanta, GA	Multi- purpose	938
90	United States	Doyle Conservation Center (DCC)	Leominster, MA	Multi- purpose	2,043
91	United States	Aldo Leopold Legacy Center	Baraboo, WI	Multi- purpose	1,104
92	United States	Challengers Tennis Club	Los Angeles, CA	Stadium	325
93	United States	Magnify Credit Union - South Lakeland	Lakeland, FL	Multi- purpose	385
94	United States	NREL Science and Technology Facility	Golden, CO	Office	6,628
95	United States	Jane D'Aza Convent House of Formation	San Rafael	Residential	576
96	United States	Nueva School	Hillsborough, CA	School	2,508
97	United States	UT School of Nursing and Student Center	Houston, TX	School/Labor atory	18,116
98	United States	Rice Fergus Miller Office	Bremerton, WA	Office	3,344
99	United States	Sidwell Friends Middle School	Washington, DC	School	6,707
100	United States	Claiborne & Churchill Winery	San Luis Obispo, CA	Store Retail	240

Appendix II Figures of Best Practices

Appendix II here gives out the cases that approved to disclosed.

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building

APEC 100 Best Practice Analysis of Nearly/Net Zero E	nergy Building Economic Cooperation
No.77 US-Bullitt Center	No.78 US- Chrisney Library
No.79 US-Environmental Tech Center Sonoma	No.80 US- Hawaii Gateway Energy Center
State	
No.81 US- Leslie Shao-Ming Sun Field Station	No.82 US- Oberlin College Lewis Center
Station	
No.83 US- Omega Center for Sustainable Living	No.84 US- The Putney School Net Zero Energy Field House

Appendix III Selected Best Practices information template

Asia-Pacific Economic Cooperation	APEC Best Practic		y (Net) Ze ormation (0.	0		
Basic Information				0011000	P			
Building Name	Swanston Acad Building		Locat	ion (City)	Melbourne, Victoria Australia		
Building Type		ial 🗆	Office 🗆	School Educat		Please	Specify)_Higher	
Net Floor Area (m^2)	34,325.41 r	m2	Treated f	loor area	(m ²)	2	1,578.50 m2	
Number of storeys	15		Compl	etion Da	te		July 2012	
Incremental Cost	□Passive appr	oaches	(%)	□Acti	ive approac	hes (%)	
Allocation (%)	X Renewable e	energy s	ystem (%) E	Control s	ystem (%)	
	25% reduction	target b	y 2020 , 50)% onsite	e, 30% thr	ough E	PCs and 20% offsets	
Source of	□Government	Subsid	y (%)	□Pro	ject Incenti	ve (%)	
Incremental Cost	X Self-fund (%)	Donation	/Industry	y in-kind su	ipport (%)	
Key Technical Index	es							
	Energy C	ption Targe	Design V	alue	Average value for typical			
Energy	Annual Heatir	and (kWh/	8.0					
consumption	Annual Coolir	ng Dem	and (kWh/	m²a)	2.5			
	Primary Energ	•	-	. ,	49.6			
	Primary Energy	Primary Energy Consumption Including: xHeating/Cooling xLighting xPlug						
Building energy codes or standards		N	ational Con	struction	code of A	ustralia		
Energy saving appro	aches (Yes for	√)						
	Skylight	Sola	r Tubes	Therm	al Zoning	Pass	ive Solar Heat Gain	
			atural					
Passiva	Site Vegetation		tilation	Ground	d Cooling		Sun shading	
Passive Approaches				Ground	d Cooling		Sun shading $$	

ADEC 100 Post Prostico Anal	usis of Noorly/Not Zore	Enorgy Duilding
APEC 100 Best Practice Anal	ysis of mearly/met Zeru	D Energy Dunning

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building								
	10kL Greywater tank							
	Energy Efficient Lighting	Advanc Lightii Contro	ng	Efficient Appliances	Load Manager		Mechanical Air Heat Recovery	
Active Approaches	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	
	Displacemen	Radiant	t	Radiant	Air Sou	urce	Hot Water Heat	
	t Ventilation	Heating	ç.	Cooling	Heat Pu	ump	Recovery	
	\checkmark	√		\checkmark	\checkmark	\checkmark	1	
	Other (Please Specify)			ected to the ro s rooms are bo		-	onditioning will not class rooms	
APEC	APE	C Nearly	y (Ne	et) Zero En	ergy Bu	ilding		
Asia-Pacific Economic Cooperation	Best Prac	tices Inf	orma	ation Collec	tion Ter	mplate		
Basic Information								
Building Name	Valley W Management	aste Resourc Authority C		Location	n (City)	Kentville, NS		
Building Type		ential	Offic	e 🗆 School	□Othe	Others (Please Specify)		
Heating Degree Day	y 413	0	Cooling Degree Day					
Net Floor Area (m^2) 743	Treated floor area (m^2)				623		
Number of storeys	2F/	2F/ BF Completion I			Date	te June, 2012		
Incremental Cost		□Passive approaches (4.8 %) □Active approaches (%)						
Allocation (%)	□Renewa	□Renewable energy system (%) □Control system (%)						
Source of Increment	al Governr	□Government Subsidy (%) □Project Incentive (%)						
Cost	□Self-fun	□Self-fund (%) □Donation/Industry in-kind support (%)						
Key Technical Inde	xes							
	Ener	gy Consu	impti	on Targets		Design Value	Average value for typical	
	Annual	Heating D	Demar	nd (kWh/m²a	.)	14.4	32.1	
Energy consumption	n Annual	Cooling D	Demar	nd (kWh/m²a	.)			
	Primary	Energy C	onsun	nption kWh/(1	m²)	44		
		Source to Site Conversion Factor (Electric					2.7	
	Primary Er	nergy Con	isump	tion Including	g: 🗖 Heati	ng/Cool	ing ■Lighting■Plug	

Energy	saving	approaches	(Yes for√)	
Linergy	bu mg	uppi ouches		

Efficient Lighting Efficient Load Lighting Controls Appliances Management									
SiteNatural VegitationGround CouldSun shadingSiteVegetationGround CouldSun shadingNatural VegetationGround CouldSun shadingOthersVegetationVegetationManagetaAdvarced Lighting Lighting ControlsControlsMechanical Air Hea RecoveryAdvarced Lighting ControlsControlsMechanical Air Hea RecoveryAdvarced Lighting ControlsControlsManagetaMechanical Air Hea RecoveryAdvarced Lighting ControlsKation of the point		Skylight	Solar Tub	bes	Thermal	Zoning	Pas	sive Solar Heat Gain	
Passive Approaches Vegetation Ventilation Ground Cooling Sun shading X X X X Sun shading Others X X Sun shading Others Passive Sur Vegetation Advacue Efficient Load Mechanical Air Hea Recovery Advacue Efficient Appliances Management Mechanical Air Hea Nether Approaches X X X Load Mechanical Air Hea Attributing Controls X X X Severey 89% Latent and Sensible Displaceme nt Radiant Air Source Hot Water Heat Recovery Ventilation Radiant Air Source Hot Water Heat Recovery Building Name Babitobleque de Vareme Location (City Lineary Veretilator Veretilator Building Type S151 (<18°C)		X			X			Х	
Passive solar designOthersPassive solar designPassive solar designMachanical Air Hea RecoveryPassive ApproachesEnergy LightingAdvanced LightingEfficient LightingLoad AppliancesMechanical Air Hea RecoveryActive ApproachesEnergy Varial and SensibleAdvanced LightingEfficient LoganianLoad AppliancesMechanical Air Hea RecoveryActive ApproachesRadiant HeatingAir Source CoolingHot Water Heat HeatingMecoveryMarkRadiant HeatingAir Source CoolingHot Water Heat RecoveryMecoveryAPEC NearCloopZero Energy Source of Incremental CostSource of Incremental CostAir Source Heat PumpHot Water Heat RecoveryBuilding TypeBibliothèque de Varennes Specify]_Library	Passive Approaches				Ground C	Cooling		Sun shading	
Active ApproachesEnergy Efficient Lighting ControlsAdvanced Efficient AppliancesEfficient AppliancesLoad ManagementMechanical Air Hea RecoveryActive ApproachesXXX89% Latent and Sensible Oppliances89% Latent and Sensible RecoveryActive ApproachesRadiant t VentilationRadiant HeatingAir Source ResidenceHot Water Heat RecoveryBuilding NameBibliothèque de VarennesLocation (City)XVarennes, QCBuilding TypeBibliothèque de VarennesLocation (City)Varennes, QCBuilding TypeS151 (<18°C)		X	X						
Active ApproachesEfficient Lighting ConrolsEfficient AppliancesLoad ManagementRecoveryActive ApproachesXXX89% Latent and Sensible Displaceme nt VentilationRadiant HeatingRadiant CoolingAir Source Heat PumpHot Water Heat RecoveryDisplaceme nt VentilationRadiant HeatingRadiant CoolingAir Source Heat PumpHot Water Heat RecoveryBuilding NameBibliothèque de VarennesLocation (City)Varennes, QCBuilding TypeBibliothèque de VarennesLocation (City)Others (Please Specify)_LibraryHeating Degree Day5151 (<18°C)		Others			Passiv	ve solar d	lesign		
Active Approaches Displacement Radiant Radiant Air Source Hot Water Heat Recovery Ventilation Ventilation Ventilation X Image: Net organization of the set organization		Efficient	Lighting Appliances		Efficient			Mechanical Air Heat Recovery	
		X	X		Х			89% Latent and Sensible	
APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template Basic Information Basic Information Building Name Bibliothèque de Varennes Location (City) Varennes, QC Building Type Bibliothèque de Varennes Location (City) Others (Please Building Type Cooling Degree Day 95 (>18°C) Net Floor Area (m² 2017 Treated floor area (m²) December, 2014 Number of storeys 2F/ BF Completion Date December, 2014 Allocation (%) Renewable energy system (%) Control system (%) Net Floor Area (%) Average value for type and the system (%) Source of Incremental Cost Government Subsidy (35 %) Droation/Industry in-kind support (8 %) Average value for type and the system (%) Key Technical Indexe Energy Consumption Design Value Average value for type and type	Active Approaches	nt							
Best Practices Information Collection Template Basic Information Building Name Bibliothèque de Varennes Location (City) Varennes, QC Building Type					X				
Basic Information Building Name Bibliothèque de Varennes Location (City) Varennes, QC Building Type			•	-			0		
Building Type Residential Office School Others (Please Building Type 5151 (<18°C) Cooling Degree Day 95 (>18°C) Net Floor Area (m² 2017 Treated floor area (m²) Number of storeys 2F/ BF Completion Date December, 2014 Incremental Cost Passive approaches (%) Active approaches (%) Allocation (%) Renewable energy system (%) Control system (%) Source of Incremental Cost Government Subsidy (35 %) Project Incentive (%) Source of Incremental Cost Self-fund (57 %) Donation/Industry in-kind support (8 %) Key Technical Indexes Energy Consumption Targets Design Value Average value for typical		Dest i fuctio		cion.	concentra	rempi	ute		
Building Type Specify]_Library	Building Name	Bibliothèque de Va	rennes	Locat	ion (City)		,	Varennes, QC	
Net Floor Area (m² 2017 Treated floor area (m²) Number of storeys 2F/ BF Completion Date December, 2014 Incremental Cost □Passive approaches (%) □Active approaches (%) Allocation (%) Allocation (%) □Renewable energy system (%) □Control system (%) ○ Source of Incremental Cost ■Government Subsidy (35 %) □Project Incentive (%) > Source of Incremental Cost ■Self-fund (57 %) ■Donation/Industry in-kind support (8 %) > Key Technical Indexes Energy Consumption Targets Design Value Average value for typical	Building Type					hool 🔳	Others.	s (Please	
Number of storeys 2F/ BF Completion Date December, 2014 Incremental Cost □Passive approaches (%) □Active approaches (%) □Active approaches (%) □Active approaches (%) Allocation (%) □Renewable energy system (%) □Control system (%) □Control system (%) ○ Source of Incremental Cost ■Government Subsidy (35 %) □Project Incentive (%) ○ ○ Source of Incremental Cost ■Self-fund (57 %) ■Donation/Industry in-kind support (8 %) ○ ○ Key Technical Indexes Energy Consumption Targets Design Value Average value for typical	Heating Degree Day	5151 (<18°C	C) Co	oling	Degree Day	ay 95 (>18°C)			
Incremental Cost □Passive approaches (%) □Active approaches (%) □Renewable energy system (%) □Control system (%) □Renewable energy system (%) □Control system (%) □Government Subsidy (35 %) □Project Incentive (%) ■Government Subsidy (35 %) □Project Incentive (%) ■Self-fund (57 %) ■Donation/Industry in-kind support (8%) Key Technical Indexes Energy Consumption Targets Design Value Average value for typical	Net Floor Area (m^2	2017	Trea	ated fl	oor area (n	n ²)			
Allocation (%) □Renewable energy system (%) □Control system (%) Source of Incremental Cost ■Government Subsidy (35 %) □Project Incentive (%) Self-fund (57 %) ■Donation/Industry in-kind support (8%) Key Technical Indexes Fenergy Consumption Targets Design Value Average value for typical Image: Consumption Targets Design Value	Number of storeys	2F/	BF C	Compl	etion Date		De	cember, 2014	
Image: Source of Incremental Cost Image: Source of Incremental Cost Image: Source of Source of Source of Incremental Cost Image: Source of Incremental Cost Image: Source of Incremental Cost Image: Source of Incremental Source of Incremental Cost Image: Source of Incremental Source of Incremental Source of Incremental Cost Image: Source of Incremental Source of Incremental Source of Incremental Source of Incremental Cost Image: Source of Incremental Source of Incremental Source of Incremental Source of Incremental Cost Image: Source of Incremental Cost Image: Source of Incremental Source of Incrementating Incremental Source of Incremental Source of Incremental Source	Incremental Cost	□Passive appro	oaches (%)	□Active	approac	hes (%)	
Source of Incremental Cost ■Self-fund (57 %) ■Donation/Industry in-kind support (8 %) Key Technical Indexes Energy Energy Consumption Targets Design Value Average value for typical Consumption Image: Consumption Targets Design Value Average value for typical	Allocation (%)	□Renewable e	nergy system	ı (%) □C	Control sy	/stem ((%)	
Self-fund (57 %) Donation/Industry in-kind support (8 %) Key Technical Indexes Energy Energy Consumption Targets Design Value Average value for typical Consumption Image: Consumption Targets Design Value Average value for typical	Source of	Government	Subsidy (3	85 %) □Pro	ject Ince	ntive (%)	
Energy Consumption Targets Design Value Average value for typical	Incremental Cost	■Self-fund (57 %) ∎Do	onatio	n/Industry i	n-kind sı	apport	(8%)	
Energy Energy Consumption Targets Design Value consumption typical	Key Technical Indexe	es							
consumptionAnnual Heating Demand (kWh/m²a)19153	Energy	Energy C	consumption	Targ	jets	Design V	Value	U U	
	consumption	Annual Heatin	ng Demand (kWh	/m²a)	19		153	

	Annual Cooling Demand (kWh/m ² a)	5	19
	Primary Energy Consumption kWh/(m ²)	77	348
	Source to Site Conversion Factor (Electrici	1.5 (hyd	ro and wind)
	Primary Energy Consumption Including:	Heating/Cooling	■ Lighting ■ Plug
Building energy codes or standards	National Building Code of Canada; Na	tional Energy C	ode for Buildings

Energy saving approaches (Yes for \checkmark)

	Skylight	Solar Tube	es	Therma	l Zoning	Passiv	e Solar Heat Gain	
Passive	Х			2	X		Х	
Approaches	Site	Natural		Ground	Cooling	(Sun shading	
Approaches	Vegetation	Ventilatio	n	Oround	Cooling	L	oun shading	
	Х	Х					Х	
	Energy	Advanced	БĘ	ficient	Loa	d	Mechanical Air	
	Efficient	Lighting			Manage		Heat Recovery	
	Lighting	Controls	Арг	oliances	wianage	mem		
	Х	X (*)		Х		Х		
	Displacement	Radiant	Ra	adiant	Air Sour	ce Heat	Hot Water Heat	
Active Approaches	Ventilation	Heating	Co	ooling	Pun	np	Recovery	
Active Approaches	Х	Х		Х	X			
		(*) DALI - I	Digita	al Address	able Light	ing Interf	face	
	Other (Disses	• BIPV/T	syste	em with he	eat recover	y supple	menting fresh air	
	Other (Please Specify)	pre-heat	t					
	specify)	• CO ₂ bas	sed ve	entilation				
		• condenser heat from heat pump to DHW tank						
APEC	APEC Nearly (Net) Zero Energy Building							
Asia-Pacific Economic Cooperation								

Basic Information			1				
Building Name	EcoTerra	Location (City) Eastman, QC					
Building Type	■ Residential □	Office School Othe	ers (Please Specify)				
Heating Degree Day	5151 (<18°C)	Cooling Degree Day	95 (>18°C)				
Net Floor Area (m^2	230	Treated floor area (m^2)	210				
Number of storeys	2F/ BF	Completion Date	August, 2008				
Incremental Cost	□Passive approaches	(%) \Box Active app	proaches (%)				
Allocation (%)	□Renewable energy s	ystem (%) □Cont	rol system (%)				
Source of Incremental Cost	□Government Subsid	y (%) □Project In	centive (%)				

 \Box Self-fund ($\ \ \%$) $\ \ \Box$ Donation/Industry in-kind support ($\ \ \%$)

Key Technical Index	es							
	Energy Co	onsumption '	Targe	ets	Design V	alue	Average value for typical	
	Annual Heatin	g Demand (kWh/	m²a)	42		122	
Energy consumption	Annual Coolin	g Demand (kWh/	⁶ m ² a)	0		3	
	Primary Energy	y Consumptio	on kW	/h/(m²)	52		183	
		ite Conversio Electricity)	on Fac	ctor	1.5	5 (hyd	ro and wind)	
	Primary Energy	Consumption	n Inc	luding:	Heating/C	Cooling	g■ Lighting■Plug	
Building energy codes or standards		Natio	nal B	uilding (Code of Ca	nada		
Energy saving appro	aches (Yes forv	()						
	Skylight	Solar Tub	Solar Tubes Therma			Pass	sive Solar Heat Gain	
					X		X	
Passive	Site	Natural		Ground	d Cooling		Sun shading	
Approaches	Vegetation	Ventilatio	n		X			
	Others	X			X Thermal ma		X	
		Advanced		l			Mechanical Air Heat	
	Energy Efficient	Lighting	Eff	ïcient	Load	1	Recovery	
	Lighting	Controls	App	liances	Manageme	nt	Recovery	
	X			X	X		X	
	Displacement	Radiant	Ra	diant	Air Source		Hot Water Heat	
Active Approaches	Ventilation	Heating	Co	oling	Heat Pun	np	Recovery	
	Х	Х						
	Other (Please Specify)	therma	l cha		scharging	crete	slab for active	
	APEC N	early (Net)	Zer	o Energ	y Buildin	g		
Asia-Pacific Economic Cooperation	Best Practices	s Informati	on C	ollectio	n Templa	te		
Basic Information								
Building Name	Rideau Residen	ice Lo	ocatio	on (City)		Ot	tawa, Ontario	
Building Type	Residential	□Office		hool 🗆	Others (Ple	ase Sp	ecify)	
Heating Degree Day	4059	Cool	ing D	egree Da	ay		1317	
Net Floor Area	329	Tre	ated	floor area	l			

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building							Economic Cooperation		
(m ²)			(m²)					
Number of storeys	2 F/	BF	Compl	etion Dat	te		Sept, 2014		
Incremental Cost	□Passive appro	oaches (%)	□Acti	ive app	roaches	(%)		
Allocation (%)	□Renewable e	nergy syster	n (%) [Contr	ol syster	n (%)		
Source of	□Government	Subsidy (%)	□Pro	ject Ind	centive (%)		
Incremental Cost	■Self-fund (Self-fund (%) \Box Donation/Industry in-kind support (%)							
Key Technical Index	es								
	Energy C	onsumptior	n Targ	ets	Desi	gn Value	Average value for typical		
	Annual Heatin	g Demand (kWh/	′m²a)	1	14.72			
Energy consumption	Annual Coolin	ing Demand (kWh/m ² a) 7.7							
•	Primary Energy	y Consumpt	ion kW	/h/(m²)		90			
	Source to	Site Conve	rsion F	Factor			3.3		
		(Electricity							
	Primary Energy	Consumpti	on Inc	luding:	Heatin	g/Coolir	g∎Lighting ■Plug		
Building energy codes or standards	Pa	ssive House	Stand	lard / LF	EED Pl	atinum	for Homes		
Energy saving appro	aches (Yes forv	/)							
	Skylight	Solar Tu	bes	Therm	al Zoni	ng Pa	assive Solar Heat Gain		
Passive	Site Vegetation	Natura Ventilat		Ground	d Cooli	ng	Sun shading		
Approaches	X (*)	ventilat							
	Others	(*) Green	roof						
	Energy	Advanced	Eff	ficient	L	bad	Mechanical Air Heat		
	Efficient	Lighting		oliances		gement	Recovery		
Active Approaches	Lighting	Controls							
rear empirodents									
	Displacement	Radiant		adiant		Source	Hot Water Heat		
	Ventilation	Heating	Co	ooling	Heat	Pump	Recovery		

Asia-Pacific Economic Cooperation	APEC Ne Best Practices	•				0			
Basic Information									
Building Name	Solterre Concep Cottage Retrea		Locati	on (City))	Lune	nberg, Nova Scotia		
Building Type		□Residential □Office □School □Others (Please Specify)							
Heating Degree Day	4518	Сс	oling	Degree I	Day		813		
Net Floor Area (m^2	139	Trea	Treated floor area (
Number of storeys	1 F/ B	F (Compl	etion Dat	te		Oct, 2012		
Incremental Cost	■Passive approa	ches (7.'	7 %) 🗆 A	Active app	roaches	(%)		
Allocation (%)	■Renewable ene	ergy systen	n (14.	0%)	□Control	system	ı (%)		
Source of	□Government St	ubsidy (%)	■ Pro	ject Incent	tive (%)		
Incremental Cost	□Self-fund (%) □Do	onatior	/Industry	/ in-kind s	upport	(%)		
Key Technical Index	es								
	Energy Cor	sumption	Targe	ets	Design	Value	Average value for typical		
	Annual Heating	Demand (kWh/	m²a)	17.35 kV	Vh/m²			
Energy	Annual Cooling	Demand (kWh/	m²a)					
consumption	Drimon Frances	· · · · · · · · · · · · · · · · · · ·	1-33	/l. /(?)	13 kWh - El 13.6 ekWh	-	2721-33/4		
	Primary Energy (Consumpti	on k w	/m/(m²)	4.5 ekWh -		273kWh		
	ource to Site Conv	ersion Fac	tor (El	ectricity)		N/A	(off-grid)		
	Primary Energy C	Consumptio	on Incl	uding:		«Wh/ye			
	Heating/Coolin	ng ∎Ligi	nting	Plug	70 litr	es prop	ane / year		
Building energy codes or standards	Pass	ive House	Stand	ard / LE	ED Platin	num fo	r Homes		
Energy saving appro	oaches (Yes for√))							
	Skylight	Solar Tul	bes	Therma	al Zoning	Pass	sive Solar Heat Gain		
Passive	X				X		Х		
Approaches	Site Vegetation	Natura Ventilati		Ground	d Cooling		Sun shading		
	X				Х	Т	rees (east & west)		
	Energy	Advanced	Eff		Load		Mechanical Air Heat		

Lighting	Controls			
Х		Х		Х
Displacement	Radiant	Radiant	Air Source	Hot Water Heat
Ventilation	Heating	Cooling	Heat Pump	Recovery
				Х

	e Analysis of Nearl APEC N	•				gy Buildi	ng	Economic Cooperation
Asia-Pacific Economic Cooperation	Best Practice	es Info	rmat	ion	Collecti	ion Temp	late	
Basic Information								
Building Name	Xingfubao Pa House	ssive		Loca	ation (Cit	ty)		Urumqi
Building Type	Residential	$\Box \checkmark 0$	Office		School	Others (Please	Specify)
Heating Degree Day			С	oolin	g Degree	Day		
Net Floor Area (m^2)	7791.03m ²	Treated floor area (m ²)					$6209.3 \ \mathrm{m^2}$	
Number of storeys	6F/ 2	BF		Com	pletion D	ate		2014.12
3Incremental Cost Allocation (%)	□Passive appro		·		·	□Active app □Control s		es (1 %) (%)
Source of Incremental Cost	□Government □ √ Self-fund (·				iject Incenti stry in-kind		%) rt (%)
Key Technical Index	es							
	Energy Co	onsump	otion '	Targe	ets	Design V	alue	Average value for typical
	Annual Heatin	g Dema	and (1	kWh/	m²a)	14.1		15
Energy	Annual Coolin	g Dema	and (kWh/	m²a)	3.0		15
consumption	Primary Energy	y Consu	imptio	on kW	/h/(m²)	54		120
	Source to S	ite Con Electric		n Fac	ctor			
	Primary Energy Plug	Consu	mption	n Incl	uding:⊏	Heating/Co	ooling	□Lighting □
Energy saving appro	eaches (Yes for γ	()						
	Skylight	Sola	ır Tub	es	Therm	al Zoning	Pass	sive Solar Heat Gain
_	\checkmark							\checkmark
Passive Approaches	Site Vegetation		atural tilatio		Ground	d Cooling		Sun shading
			\checkmark					\checkmark
Active Approaches	Energy Efficient	Advar Light			ïcient liances	Load Manageme		Mechanical Air Heat Recovery

Lighting	Controls			
\checkmark	\checkmark	\checkmark		\checkmark
Displacement	Radiant	Radiant	Air Source	Hot Water Heat
Ventilation	Heating	Cooling	Heat Pump	Recovery
	\checkmark	\checkmark		

APEC 100 Best Practic	e Analysis of Nearly	The Lero Lin	i gy Dunung			Economic Cooperation	
APEC	APEC N	APEC Nearly (Net) Zero Energy Building					
Asia-Pacific Economic Cooperation	Best Practices	s Informat	ion Collect	ion Temp	late		
Basic Information							
Building Name	Cuicheng Disab Rehabilitatior Center		Location (Ci	ty)		Beijing	
Building Type	□Residential	□ √ Office	□School	\Box Others ((Please Specify)		
2470	2470	C	ooling Degree	e Day			
Net Floor Area (m^2)	2519	Trea	Treated floor area (m ²) 1316				
Number of storeys	3F/ 1 B	BF	Completion I	Date		2016.10	
3Incremental Cost	□Passive approa	aches (79	9%) □A	ctive appro	oaches ((3%)	
Allocation (%)	□Renewable end	ergy system	(18%)		l system	n (%)	
Source of	□Government S	ubsidy (%) □Pro	oject Incent	ive (%)	
Incremental Cost	Incremental Cost $\Box \checkmark$ Self-fund (%) \Box Donation/Industry in-kind support (%)						
Key Technical Index	es						
	Energy Co	nsumption [Fargets	Design	Value	Average value for	
				Design		typical	
	Annual Heating			12 12		typical	
Energy	Annual Heating Annual Cooling	; Demand (1	kWh/m ² a)			typical	
Energy consumption		; Demand (1	kWh/m ² a)	12		typical	
	Annual Cooling Primary Energy Source to Sit	; Demand (1 ; Demand (1 ; Consumptio	kWh/m ² a) kWh/m ² a) on kWh/(m ²)	12		typical	
	Annual Cooling Primary Energy Source to Sit	Demand (1 Demand (1 Consumption te Conversion Electricity)	kWh/m ² a) kWh/m ² a) on kWh/(m ²) n Factor	12 19 72			
	Annual Cooling Primary Energy Source to Sit (E Primary Energy C Plug	Demand (1 Demand (1 Consumption te Conversion Electricity) Consumption	kWh/m ² a) kWh/m ² a) on kWh/(m ²) n Factor	12 19 72			
consumption	Annual Cooling Primary Energy Source to Sit (E Primary Energy C Plug	Demand (1 Demand (1 Consumption te Conversion Electricity) Consumption	kWh/m ² a) kWh/m ² a) n kWh/(m ²) n Factor n Including:[12 19 72	ooling		
consumption Energy saving appro	Annual Cooling Primary Energy Source to Sit (E Primary Energy 0 Plug paches (Yes for√	Demand (1 Demand (1 Consumption te Conversion Consumption Consumption)	kWh/m ² a) kWh/m ² a) n kWh/(m ²) n Factor n Including:[12 19 72 Heating/C	ooling		
consumption Energy saving appro Passive	Annual Cooling Primary Energy Source to Sit (E Primary Energy 0 Plug paches (Yes for√ Skylight	Demand (1 Demand (1 Consumption te Conversion Consumption Consumption)	kWh/m ² a) kWh/m ² a) on kWh/(m ²) n Factor n Including: es Therm	12 19 72]Heating/C	ooling	Lighting	
consumption Energy saving appro	Annual Cooling Primary Energy Source to Sit (E Primary Energy C Plug Paches (Yes for√ Skylight √	Demand (1 Demand (1 Consumption te Conversion Clectricity) Consumption Solar Tube	kWh/m ² a) kWh/m ² a) on kWh/(m ²) n Factor n Including:E es Therm	12 19 72 Heating/C	ooling		
consumption Energy saving appro Passive	Annual Cooling Primary Energy Source to Sitt (E Primary Energy (Plug Plug Paches (Yes for√ Skylight √ Site	Demand (1 Demand (1 Consumption te Conversion Consumption Consumption Solar Tube Natural	kWh/m ² a) kWh/m ² a) on kWh/(m ²) n Factor n Including:E es Therm	12 19 72]Heating/C	ooling	Lighting	

2015.09

%)

%)

%)

9F/1 BF

 \Box Renewable energy system (5 %)

□Passive approaches (

□Government Subsidy (

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building							Asia-Pacific Economic Cooperation	
	Efficient	Lighting		Appliances	Managen	nent	Recovery	
	Lighting	Controls						
Active Approaches	\checkmark	\checkmark		\checkmark			\checkmark	
rr m	Displacement	Radiant		Radiant	Air Source		Hot Water Heat	
	Ventilation	Heating		Cooling	Heat Pump		Recovery	
APEC Nearly (Net) Zero Energy Building								
Asia-Pacific Economic Cooperation	Best Practices Information Collection Template							
Basic Information								
Building Name	Orient Sundar					Gaobeidian		
	Experts Apartment		Location (City)					
Building Type	$\Box \checkmark Residential \ \Box Office \ \Box School \ \Box Others (Please Specify)$							
Heating Degree Day		С		ooling Degree Day				
Net Floor Area (m^2)	8016		Trea	ted floor area	(m ²)		5475	

Completion Date

 \Box Active approaches (

□Project Incentive (

 \Box Control system (15 %)

80 %)

%)

 $\Box \checkmark$ Self-fund (100 %) \Box Donation/Industry in-kind support (

Key Technical Indexes

Number of storeys

3Incremental Cost

Allocation (%)

Source of Incremental Cost

	Energy Consumption Targets	Design Value	Average value for typical
	Annual Heating Demand (kWh/m ² a)	13.8	15
Energy	Annual Cooling Demand (kWh/m ² a)	9.93	15
consumption	Primary Energy Consumption kWh/(m ²)	98.49	120
	Source to Site Conversion Factor (Electricity)		
	Primary Energy Consumption Including:	□Lighting □	
Energy saving appro	oaches (Yes for√)		

APEC 100 Best Practice Analysis of Nearly	/Net Zero Energy Building
---	---------------------------

APEC 100 Best Practic	APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building								
	Skylight	Solar Tu	bes	Therma	al Zoning	Pass	sive Solar Heat Gain		
Passive	\checkmark								
Approaches	Site Vegetation	Natura Ventilat		Ground	d Cooling		Sun shading		
	\checkmark	\checkmark					\checkmark		
	Energy Efficient	Advanced Lighting	Ef	ficient	Load		Mechanical Air Heat Recovery		
	Lighting	Controls	App	oliances	Manageme	ent			
Active Approaches	\checkmark			\checkmark			\checkmark		
	Displacement Ventilation	Radiant Heating		adiant ooling	Air Sour Heat Pur		Hot Water Heat Recovery		
					\checkmark				
Asia-Pacific Economic Cooperation		APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template							
Basic Information	P								
Building Name	Lighthouse	e	Loc	ation (Cit	ty) Nanjing				
Building Type		□ √ Offic	e 🗆	School	Others (Please	Specify)		
Heating Degree Day	1155		Coolin	g Degree	Day				
Net Floor Area (m ²)	5100	Tre	eated f	loor area	(m ²)				
Number of storeys	3.5F/ 1	BF	Com	pletion D	ate		2015.07		
3Incremental Cost	□Passive appro	oaches (30	5 %) □A	ctive appro	oaches	(21 %)		
Allocation (%)	□Renewable e	nergy syster	n (28 %)	□Control	systen	n (15 %)		
Source of	□Government	Subsidy (%)	DPro	ject Incenti	ve (%)		
Incremental Cost	□ √ Self-fund	(%)□	Donat	ion/Indus	stry in-kind	suppo	ort (%)		
Key Technical Index	es								
	Energy C	onsumptior	Targ	ets	Design V	alue	Average value for typical		
Energy consumption	Annual Heatin	g Demand	kWh	/m²a)	27				
	Annual Coolin	g Demand	kWh	/m²a)	72				

Primary Energy Consumption kWh/(m ²)	25		
Source to Site Conversion Factor			
(Electricity)			
Primary Energy Consumption Including:	□Lighting		
Plug			

	Skylight	Sola	ar Tub	es	Thermal Zoning		Pa	assive Solar Heat Gain
Passive	\checkmark	Natural Ventilation √				\checkmark		
Approaches	Site Vegetation			n	Ground Cooling		ling Sun shading	
								\checkmark
	Energy Efficient Lighting	Ligh	dvanced ighting Controls		ent	Mechanical Air Heat Recovery		
	\checkmark	~			\checkmark	\checkmark		
Active Approaches	Displacement	Radia	int	Ra	diant	Air Sour	ce	Hot Water Heat
	Ventilation	Heatin	ng	Co	oling	Heat Pun	np	Recovery
	Other	Other						
APEC		•		-		gy Buildi	0	
Economic Cooperation	Best Practic	es Info	ormat	ion	Collecti	on Templ	ate	
Basic Information								
Building Name	The Garden H	ome		Loca	ation (Cit	y)		Tianjin
Building Type			Office		School	Others (Pleas	se Specify)
Heating Degree Day			С	oolin	g Degree	Day		
Net Floor Area (m^2)	10901		Trea	ted fl	oor area	(m ²)		7365
Number of storeys	30F/ 1	BF		Comj	pletion D	ate		2017.12
3Incremental Cost	□Passive appro	oaches	(40)%)		ctive approx	ache	s (40 %)
Allocation (%)	□Renewable e	nergy s	ystem	(10)%)		l sys	tem (10 %)
Source of	Government	Subsid	у (3 %) 🗆 Pi	roject Incer	ntive	(%)
Incremental Cost	□ √ Self-fund	(97 9	%) C	Dor	nation/Inc	lustry in-ki	nd si	upport (%)

Key Technical Indexes								
	Energy Consumption				Design V	alue	Average value for typical	
	Annual Heatin	g Demand (kWh/	m²a)	15		15	
Energy	Annual Cooling Demand (kWh/m ² a) Primary Energy Consumption kWh/(m ²) Source to Site Conversion Factor				23		23	
consumption					119		120	
	Primary Energy Plug	Electricity) Consumption	n Incl	luding:	Heating/Co	ooling	□Lighting □	
Energy saving appro	aches (Yes forv	/)						
	Skylight	Solar Tubes Therma		al Zoning Pas		sive Solar Heat Gain		
Passive	\checkmark						\checkmark	
Approaches	Site Vegetation	Natural Ventilatio	n	Ground	d Cooling		Sun shading	
		\checkmark					\checkmark	
	Energy Efficient Lighting	Advanced Lighting Controls		ïcient liances	Load Manageme		Mechanical Air Heat Recovery	
Active Approaches								
	Displacement Ventilation	Radiant Heating		diant oling	Air Source Heat Pump		Hot Water Heat Recovery	

APEC 100 Best Practic		early (Net			gy Buildi	ng	Economic Cooperati		
Asia-Pacific Economic Cooperation	Best Practices	Best Practices Information Collection Template							
Basic Information									
Building Name	The Quancher Park Relief Command Cen		Locat	ion (Cit		Jinan			
Building Type	□Residential	$\Box \checkmark Office$		chool	□Others (Please	Specify)		
Heating Degree Day		C	ooling	Degree	Day				
Net Floor Area (m ²)	945	Trea	ated flo	or area	(m ²)		943		
Number of storeys	3F/ 1 E	BF	Compl	letion D	ate		2016.02		
3Incremental Cost	□Passive approa	aches (%)	□Acti	ve approac	hes (%)		
Allocation (%)	□Renewable en	ergy system	(9	%) C	Control s	ystem ((%)		
Source of Incremental Cost		□Government Subsidy (%) □Project Incentive (%) □ √ Self-fund (%) □Donation/Industry in-kind support (%)							
Key Technical Index	es								
	Energy Co	nsumption	Target	ts	Design Value		Average value for typical		
	Annual Heating	g Demand (kWh/n	n²a)	0.39)	10		
Energy	Annual Cooling	g Demand (kWh/n	n²a)	13.1	0	25		
consumption	Primary Energy	Consumptio	on kWł	n/(m²)	41.5	4	120		
		te Conversio	Conversion Factor						
	(E	Electricity)		01					
	(E Primary Energy (Plug		n Inclu		Heating/Co	ooling	□Lighting		
Energy saving appro	Primary Energy Plug	Consumptio	n Inclu		Heating/Co	ooling	□Lighting		
Energy saving appro	Primary Energy Plug	Consumptio		ıding: 🗆	Heating/Co al Zoning		□Lighting		
Energy saving appro	Primary Energy of Plug Paches (Yes for√ Skylight √	Consumptio) Solar Tub √	es	ıding: 🗆					
	Primary Energy Plug paches (Yes for√ Skylight	Consumptio) Solar Tub	es	ıding:□			vive Solar Heat		
Passive	Primary Energy © Plug Daches (Yes for√ Skylight √ Site	Consumptio) Solar Tub √ Natural	es	ıding:□	al Zoning		sive Solar Heat		

APEC 100 Best Practic	e Analysis of Nearly/Net Zero Energy Building									
	Efficient	Ligh	ting	Appliances	Manager	nent	Recovery			
	Lighting	Con	trols							
	1			1	,		\checkmark			
A ativa A pproachas	\checkmark			\checkmark	\checkmark		V			
Active Approaches	Displacement	Radia	int	Radiant	Air Sou	irce	Hot Water Hea	at		
	Ventilation	Heati	ng	Cooling	Heat Pu	ımp	Recovery			
				\checkmark	√					
	APEC I	APEC Nearly (Net) Zero Energy Building								
Asia-Pacific Economic Cooperation	Best Practic	•			0.	0				
Basic Information										
Duilding Nome	Beihang Scie	nce		Leasting (Cit			Vontoi			
Building Name	Park			Location (Cit	.y)		Yantai			
Building Type		$\Box \checkmark$	Office	□School	Others	(Please	Specify)			
Heating Degree Day			C	ooling Degree	Day					
Net Floor Area (m ²)	3041		Trea	ted floor area	(m ²)		3006			
Number of storeys	4F/	BF		Completion D	ate		2017.08			
3Incremental Cost	\Box Passive approaches (%) \Box Active approaches (%)									
Allocation (%)	□Renewable e	nergy s	ystem	(%)[Control	system	(%)			
	□Government	Subsid	у (%) □Pro	ject Incen	tive (%)			
Source of Incremental Cost										
	$\Box \checkmark \text{Self-fund}$	(%) 🗆 [Donation/Indus	stry in-kin	d suppo	ort (%)			
Key Technical Index	es									
	Energy C	onsum	ption '	Targets	Design	Value	Average value typical	e for		
	Annual Heatin	ıg Dem	and (1	kWh/m²a)	6.4	1	9.81			
Energy	Annual Coolin	ng Dem	and (kWh/m²a)	10.	19	11.13			
consumption	Primary Energ	y Cons	umptic	on kWh/(m²)						
	Source to S			on Factor						
		Electri				a		_		
	Primary Energy Plug	Const	imptio	n Including:	Heating/	Cooling	□Lighting [
Energy saving appro	aches (Yes for	√)								
	Skylight	Sol	ar Tub	es Therm	al Zoning	Pas	sive Solar Heat G	Jain		

	\checkmark						
Passive Approaches	Site Vegetation	Natural Ventilation		Ground Cooling			Sun shading
		\checkmark					\checkmark
	Energy Efficient Lighting	Advanced Lighting Controls		icient liances	Load Management		Mechanical Air Heat Recovery
Active Approaches	\checkmark		~		\checkmark		\checkmark
	Displacement Ventilation	Radiant Heating		diant oling			Hot Water Heat
	ventilation	√		√	Heat Pun	ιp	Recovery

Asia-Pacific Economic Cooperation	APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template							
Basic Information								
Building Name	Hebei Academy of Building Research Sino- German Passive House	Location (Cit	y)		Shijiazhuang			
Building Type	\Box Residential $\Box \checkmark$	$\Box Residential \Box \checkmark Office \Box School \Box Others (Please Specify)$						
Heating Degree Day		Cooling Degree	Day					
Net Floor Area (m^2)	14527	Treated floor area	(m ²)		11954			
Number of storeys	6F/ 1 BF	Completion D	ate		2012.06			
3Incremental Cost	□Passive approaches (%) □Active approaches (%)							
Allocation (%)	□Renewable energy s	system (%) [Control s	system (%)			
Source of	□Government Subsid	y (%) □Pro	ject Incent	tive (%)			
Incremental Cost	$\Box \checkmark$ Self-fund (%) Donation/Indus	stry in-kino	d suppor	rt (%)			
Key Technical Index	es							
Energy	Energy Consum	ption Targets	Design	Value	Average value for typical			
consumption	Annual Heating Dem	and (kWh/m ² a)	10.2	28				

Annual Cooling Demand (kWh/m ² a)	13.08					
Primary Energy Consumption kWh/(m ²)	94.02					
Source to Site Conversion Factor						
(Electricity)						
Primary Energy Consumption Including: Heating/Cooling Lighting						
Plug						

Energy saving approaches (Yes for \checkmark)

	Skylight	Solar Tub	es	Therma	al Zoning	P	assive Solar Heat Gain	
√		\checkmark	\checkmark				\checkmark	
Approaches	Site Vegetation	Natural Ventilation		Ground Cooling			Sun shading	
		\checkmark					\checkmark	
	EnergyAdvancedEfficientLightingLightingControls				Mechanical Air Heat Recovery			
Active Approaches	\checkmark			\checkmark			\checkmark	
	Displacement Ventilation	Radiant Heating		diant oling	Air Sourd Heat Pun		Hot Water Heat Recovery	
	\checkmark	\checkmark	√					

APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template

Basic Information										
Building Name	Zhongtian Material Depot	Location (City)	Chengde							
Building Type	\Box Residential $\Box \checkmark$	$\Box Residential \Box \checkmark Office \Box School \Box Others (Please Specify)$								
Heating Degree Day		Cooling Degree Day								
Net Floor Area (m ²)	8315	Treated floor area (m^2)	6688							
Number of storeys	5F/ 1BF	Completion Date	2015.11							
3Incremental Cost	□Passive approaches	(%) □Active approa	aches (%)							
Allocation (%)	□Renewable energy system (%) □Control system (%)									
Source of Incremental Cost	□Government Subsid	y (%) □Project Incen	tive (%)							

 $\Box \checkmark$ Self-fund (%) \Box Donation/Industry in-kind support (%)

Key Technical Indexes								
	Energy Co	onsump	tion T	Farge	ets	Design V	alue	Average value fo typical
An	nual Heatin	g Dema	nd (k	cWh/	m²a)	15.88	8	
Energy An	nual Coolin	g Dema	nd (k	cWh/	m²a)	6.24		
consumption Prin	mary Energy	v Consu	mption	n kW	′h/(m²)	92.98	8	
	Source to S	ite Conv Electrici		n Fac	tor			
Prin Pluş	nary Energy g	Consun	nption	ı Incl	uding:	Heating/Co	ooling	□Lighting □
Energy saving approache	es (Yes for√	')						
S	Skylight	Solar	r Tube	es	Therma	al Zoning	Pass	ive Solar Heat Gair
Passive	\checkmark							\checkmark
Approaches Ve	Site egetation		tural tilation	n	Ground	nd Cooling		Sun shading
			\checkmark			\checkmark		
E	Energy Efficient Lighting	Advan Lighti Contre	ing		icient liances			Mechanical Air Hea Recovery
Active Approaches					\checkmark			\checkmark
	placement entilation	Radian Heating			diant oling	Air Sour Heat Pun		Hot Water Heat Recovery
	\checkmark					\checkmark		
APEC		•				gy Buildi	0	
Asia-Pacific Economic Cooperation Bec Basic Information	st Practice	s Infoi	rmati	10n (Collecti	on Iempl	ate	
	Shenyang Jianz	'hu						
Building Name	University Sino- German Passive House						Shenyang	
Building Type	Residential	□ √ 0	Office		School	Others (Please	Specify)
Heating Degree Day			Co	ooling	g Degree	Day		

APEC 100 Best Practice Analysis of Nearly/Ne	et Zero Energy Building
--	-------------------------

		8, 8	
Net Floor Area (m^2)	1600	Treated floor area (m^2)	1600
Number of storeys	2F/ 1 BF	Completion Date	2015.05
3Incremental Cost Allocation (%)	□Passive approaches □Renewable energy s	. ,	roaches (15 %) bl system (25 %)
Source of Incremental Cost	□Government Subsid □ √ Self-fund (25 %	y (50 %) □Project Inc	entive (15 %) ind support (10 %)

Key Technical Indexes

	Energy Consumption Targets	Design Value	Average value for typical
	Annual Heating Demand (kWh/m ² a)	17.55	
Energy	Annual Cooling Demand (kWh/m ² a)	10.85	
consumption	Primary Energy Consumption kWh/(m ²)	6.55	
	Source to Site Conversion Factor (Electricity)		
	Primary Energy Consumption Including:	Heating/Cooling	□Lighting □

Energy saving approaches (Yes for \checkmark)

	Skylight	Solar Tub	es	Therma	al Zoning	Pa	assive Solar Heat Gain	
Passive	\checkmark	\checkmark		\checkmark			\checkmark	
Approaches	Site Vegetation	Natural Ventilatio	n	Ground	Ground Cooling		Sun shading	
	\checkmark	\checkmark					\checkmark	
	Energy Efficient Lighting	Advanced Lighting Controls	ighting Applian		Load Management		Mechanical Air Heat Recovery	
Active Approaches	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	
	Displacement Ventilation	Radiant Heating		diant oling	Air Sourc Heat Purr		Hot Water Heat Recovery	
	\checkmark	\checkmark			√			
	APEC N	Nearly (Net) Ze	ro Ener	gy Buildi	ng		

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building Economic Cooperation Best Practices Information Collection Template								
Basic Information								
Building Name	Municipal Pa	urty	Loc	ation (Cit	y)		Weihai	
Building Type	School	□ √ Off	ce 🗆	School	Others (Please	Specify)	
Heating Degree Day				g Degree		•	1 57	
Net Floor Area (m^2)	15919	T		loor area	-		14020	
Number of storeys	5F/ 1	BF	Com	pletion D	ate		2017.03	
3Incremental Cost	□Passive appro	oaches (%)	□Acti	ive approac	ches (%)	
Allocation (%)	□Renewable e	nergy syste	em (%) [Control s	ystem	(%)	
Source of	□Government	Subsidy (%)	□Pro	ject Incenti	ive (%)	
Incremental Cost	□ √ Self-fund	(%)[Dona	tion/Indus	stry in-kind	l suppo	ort (%)	
Key Technical Index	es							
	Energy C	on Targ	Design V	Value	Average value for typical			
	Annual Heatin	g Demand	(kWh	/m²a)	1.06			
Energy	Annual Coolin	g Demand	(kWh	/m²a)	4.97			
consumption	Primary Energy	y Consump	tion kV	Vh/(m²)	102.79			
	Source to S	ite Conver Electricity		ctor				
	Primary Energy Plug	v Consump	tion Inc	luding:	Heating/C	ooling	Lighting	
Energy saving appro	oaches (Yes forv	()						
	Skylight	Solar T	ubes	Therm	al Zoning	Pas	sive Solar Heat Gain	
Passive	\checkmark							
Approaches	Site Vegetation	Natu: Ventila		Ground	d Cooling		Sun shading	
	\checkmark	\checkmark					\checkmark	
Active Approaches	Energy Efficient Lighting	Advance Lighting Controls	Ef	ficient oliances			Mechanical Air Heat Recovery	

\checkmark		\checkmark		\checkmark
Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery
\checkmark	\checkmark			

Asia-Pacific Economic Cooperation									
Basic Information	Basic Information								
Building Name	The City Colleg Jilin Jianzhu Univ			Loca	tion (Cit	ty)		Changchun	
Building Type	Residential	$\Box \checkmark$	Office		School	Others (Please	e Specify)	
Heating Degree Day			C	ooling	g Degree	e Day			
Net Floor Area (m^2)	<u>1187.8</u>		Trea	ted fl	oor area	(m ²)		<u>667</u>	
Number of storeys	2F/	BF		Comp	oletion D	Date		2016.12	
3Incremental Cost	□Passive appro	aches	(%	6)	□Act	ive approac	hes (%)	
Allocation (%)	□Renewable er	nergy s	system	(%)[□Control s	ystem	(%)	
Source of	urce of Government Subsidy (41 %) Project Incentive (%)								
Incremental Cost	tal Cost □Self-fund (48 %) □Donation/Industry in-kind support (11 %)								
Key Technical Indexes									
	Energy Co	onsum	ption [Farge	ets	Design V	alue	Average value for typical	
	Annual Heating	g Dem	and (1	kWh/	m²a)	13.4	1		
Energy	Annual Coolin	g Dem	and (1	kWh/	m²a)	14.10			
consumption	Primary Energy	v Cons	umptio	n kW	′h/(m²)	4756	2		
	Source to S	ite Cor Electri		n Fac	tor				
	Primary Energy Plug		• ·	n Incl	uding:	Heating/Co	ooling	Lighting	
Energy saving appro	aches (Yes for√	')							
	Skylight	Sol	ar Tubo	es	Therm	al Zoning	Pas	sive Solar Heat Gain	
Passive	\checkmark					\checkmark			
	Site		Vatural		Groun	d Cooling		Sun shading	
Approaches	Vegetation	Vei	ntilatio √	n					
	Energy	A -1		Eff	i ai an t	.T. 1		Machanizzi A' II	
Active Approaches	Energy Efficient	Adva Ligh			icient liances	Load Manageme		Mechanical Air Heat Recovery	

Lighting	Controls			
\checkmark		\checkmark		\checkmark
Displacement	Radiant	Radiant	Air Source	Hot Water Heat
Ventilation	Heating	Cooling	Heat Pump	Recovery
\checkmark	\checkmark	\checkmark		

Г

APEC Nearly (Net) Zero Energy Building Asia-Pacific Economic Cooperation Best Practices Information Collection Template								
Basic Information								
Building Name	CABR Net Ze Energy Buildi			Loca	tion (Cit	.y)		Beijing
Building Type	□Residential	$\Box \checkmark$	Office		School	\Box Others ()	Please	Specify)
Heating Degree Day			C	oolin	g Degree	Day		
Net Floor Area (m^2)	4025		Trea	ted fl	oor area	(m ²)		
Number of storeys	4F/ 01	BF		Com	pletion D	ate		2014.5
3Incremental Cost	□Passive appro	aches	(%	6)	□Act	ive approac	hes (%)
Allocation (%)	□Renewable er	nergy s	ystem	(%)[Control sy	ystem	(%)
Source of	□Government Subsidy (%) □Project Incentive (%)							
Incremental Cost	t $\Box \checkmark$ Self-fund (%) \Box Donation/Industry in-kind support (%)							
Key Technical Indexes								
	Energy Co	onsum	ption 7	Farge	ets	Design V	alue	Average value for typical
	Annual Heatin	g Dem	and (1	kWh/	m²a)			
Energy	Annual Coolin	g Dem	and (1	kWh/	m²a)			
consumption	Primary Energy	v Cons	umptio	on kW	7h/(m²)	25		
	Source to S	ite Cor Electri		n Fac	tor			
	Primary Energy Plug		• ·	n Incl	uding:	Heating/Co	ooling	□Lighting □
Energy saving appro	aches (Yes for√	')						
	Skylight	Sol	ar Tub	es	Therm	al Zoning	Pass	sive Solar Heat Gain
Passive	\checkmark		\checkmark			\checkmark		\checkmark
Approaches	Site		latural		Ground	d Cooling		Sun shading
Approactics	Vegetation	Vei	ntilatio √	n		U U		~
	Energy	Adva		Eff	icient	Load		Mechanical Air Heat
Active Approaches	Efficient	Ligh			liances	Manageme		Recovery

Lighting	Controls			
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery
	\checkmark	\checkmark		

	APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building							
Asia-Pacific Economic Cooperation								
Basic Information								
Building Name	TENIO Gree Office	en		Loca	tion (Cit	ty)		Tianjin
Building Type	Residential	□ √ (Office		School	Others (Please	Specify)
Heating Degree Day			C	ooling	g Degree	Day		
Net Floor Area (m^2)	5756		Trea	ted fl	oor area	(m ²)		5756
Number of storeys	F/	BF	(Comp	oletion D	ate		2012.12
3Incremental Cost Allocation (%)	□Passive appro		•	%) (ive approac	,	%) (%)
Source of Incremental Cost	Source of Government Subsidy (%) Project Incentive (%)						%)	
Key Technical Index	Key Technical Indexes							
	Energy C	onsump	ption 7	Targe	ets	Design V	alue	Average value for typical
	Annual Heatin	g Dema	and (1	kWh/	m²a)	58.32	2	
Energy	Annual Coolin	g Dema	and (1	kWh/	m²a)	55.40	0	
consumption	Primary Energy	y Consu	imptio	on kW	′h/(m²)	113.7	2	
	Source to S	ite Con Electric		n Fac	tor			
	Primary Energy Plug	Consu	mptio	n Incl	uding:⊏	Heating/Co	ooling	□Lighting □
Energy saving appro	aches (Yes forv	/)						
	Skylight	Sola	ır Tube	es	Therm	al Zoning	Pas	sive Solar Heat Gain
	\checkmark					\checkmark		
Passive	Site		atural		Group	d Cooling		Sun shading
Approaches	Vegetation $$	Ven	<mark>tilatio</mark> √	n	Sioun	a coomig		√
Active Approaches	Energy Efficient	Advar Light	nced		icient liances	Load Manageme		Mechanical Air Heat Recovery

Lighting	Controls			
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery
	\checkmark	\checkmark		

Asia-Pacific Economic Cooperation		APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template							
Basic Information									
Building Name	Qingdao Eco I	Qingdao Eco Park Location (City) Qingdao							
Building Type		$\Box \checkmark$	Office		School	Others (Please	Specify)	
Heating Degree Day			Co	oolin	g Degree	Day			
Net Floor Area (m^2)	13768.6		Trea	ted fl	oor area	(m ²)		13768.6	
Number of storeys	F/	BF		Com	pletion D	ate		2016.07	
3Incremental Cost	□Passive appro	oaches	(55%)	□Acti	ve approach	nes (8%)	
Allocation (%)	□Renewable en	nergy s	ystem	(32	2 %)		l systei	m (5%)	
Source of	Government	Subsid	y (14	4 %) 🗆 F	Project Ince	ntive (%)	
Incremental Cost	□ √ Self-fund ((86 %	%) □]Don	ation/Ind	ustry in-kir	nd supp	port (%)	
Key Technical Index	Key Technical Indexes								
	Energy Co	onsum	ption [Farge	ets	Design V	alue	Average va typica	
	Annual Heatin	g Dem	and (1	kWh/	m²a)	12		60	
Energy	Annual Coolin	g Dem	and (1	kWh/	m²a)	22		110	
consumption	Primary Energy	y Cons	umptio	on kW	/h/(m²)	60		260	
	Source to S	ite Cor Electri		n Fac	ctor			1	
	Primary Energy Plug	Consu	Imption	n Incl	uding:	Heating/Co	ooling	□Lighting	
Energy saving appro	oaches (Yes forv	()							
	Skylight	Sol	ar Tube	es	Therm	al Zoning	Pass	sive Solar Hea	t Gain
Passive	\checkmark					\checkmark		\checkmark	
Approaches	Site Vegetation		latural ntilatio	n	Ground	d Cooling		Sun shading	,
	√		\checkmark					\checkmark	
Active Approaches	Energy Efficient	Adva Ligh			ïcient liances	Load Manageme		Mechanical Ai Recover	

Lighting	Controls			
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery
	\checkmark			

Asia-Pacific Economic Cooperation	Best Practice	es Informati	ion C	ollecti	on Templ	ate		
Basic Information								
Building Name	Shandong Urban Construction Vocational College					Jinan		
Building Type		$\Box \checkmark Office$	□Sc	chool	Others (I	Please	Specify)	
Heating Degree Day		Co	oling	Degree	Day			
Net Floor Area (m^2)	21428.67	Treat	ted floo	or area	(m ²)		20963.38	
Number of storeys	6F/ 1	BF C	Comple	etion D	ate		2018.03	
3Incremental Cost	□Passive appro	oaches (35	%)		ctive approa	aches	(10%)	
Allocation (%)	□Renewable e	nergy system	(43	%)		l syste	m (12 %)	
Source of	□Government	Subsidy (10)0 %) 🗆	Project Inc	entive	(%)	
Incremental Cost	□Self-fund (%) □Don	ation/I	Industry	v in-kind su	pport	(%)	
Key Technical Index	es							
	Energy C	onsumption T	Fargets	s	Design V	alue	Average value for typical	
	Annual Heatin	g Demand (k	Wh/m	n²a)	21.4		39.5	
Energy	Annual Coolin	ig Demand (k	xWh/m	n²a)	23.6		38.6	
consumption	Primary Energy	y Consumption	n kWh	n/(m²)	35		81	
		Site Conversion Electricity)	n Facto	or				
	Primary Energy Plug	Consumption	n Inclue	ding:□	Heating/Co	ooling	□Lighting □	
Energy saving appro	aches (Yes for	()						
	Skylight	Solar Tube	es	Therma	al Zoning	Pas	sive Solar Heat Gain	
	\checkmark	\checkmark			\checkmark		\checkmark	
Passive	Site	Natural		0	10 1		0 1 1	
Approaches	Vegetation	Ventilation	n	Ground	l Cooling		Sun shading	
	\checkmark	\checkmark					\checkmark	

APEC 100 Best Practic	e Analysis of Near	v/Net 7	ero Fn	erav Building			Asia-Pacific Execution Conference
III De Ivo Dest i factit	Efficient		nting	Appliances	Manager	nent	Recovery
	Lighting		trols				
Active Approaches	\checkmark	V	1	\checkmark	\checkmark		\checkmark
incort e rippi ouches	Displacement	Radia	ant	Radiant	Air Sou	urce	Hot Water Heat
	Ventilation	Heati	ng	Cooling	Heat Pu	ımp	Recovery
Apeco Asia-Pacific Economic Cooperation	APEC I Best Practice	•		t) Zero Ener tion Collect	0.	0	
Basic Information							
Building Name	Velux Office Bui	lding		Location (Cit	ty)		Langfang
Building Type	□Residential	$\Box \checkmark$	Office	e 🗆 School	□Others	(Please	Specify)
Heating Degree Day			C	ooling Degree	e Day		
Net Floor Area (m^2)	2014.5	2014.5 Treated floor area (m ²)					
Number of storeys	3F/ 0	BF		Completion D	Date		2013.05
3Incremental Cost	□Passive appro	oaches	(%) □Act	ive approa	aches (%)
Allocation (%)	□Renewable e	nergy s	system	(%)[□Control	system	(%)
Source of	□Government	Subsid	ly (%) □Pro	oject Incen	tive (%)
Incremental Cost	□ √ Self-fund	(%) □I	Donation/Indu	stry in-kin	d suppo	rt (%)
Key Technical Index	es						
	Energy C	onsum	ption	Targets	Design	Value	Average value for typical
	Annual Heatir	ig Dem	and (
Energy	Annual Cooling Demand (kWh/m ² a)						
consumption	Primary Energ	y Cons	umptio	on kWh/(m²)	34	4	60
	Source to S	ite Co Electri		on Factor			
	Primary Energy Plug	v Consu	umptio	n Including:]Heating/0	Cooling	□Lighting □

	Flug			
Energy saving appro	oaches (Yes forv	/)		
	Skylight	Solar Tubes	Thermal Zoning	Passive Solar Heat Gain

	\checkmark				\checkmark		
Passive Approaches	Site Vegetation	Natural Ventilation		Ground Cooling			Sun shading
		\checkmark					\checkmark
	Energy Efficient Lighting	Advanced Lighting Controls		icient liances	Load Manageme	ent	Mechanical Air Heat Recovery
Active Approaches	\checkmark			\checkmark			
	Displacement Ventilation	Radiant Heating		diant oling	Air Sour Heat Pun		Hot Water Heat Recovery
		\checkmark		\checkmark			

Asia-Pacific Economic Cooperation	APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template							
Basic Information	Basic Information							
Building Name	Tibet Chengfa Energy saving building material Office	Location (City) Tibet						
Building Type	\Box Residential $\Box \checkmark$	Office School	\Box Others ((Please S	Specify)			
Heating Degree Day		Cooling Degree	Day					
Net Floor Area (m^2)	2612.33	Treated floor area	(m ²)		2612.33			
Number of storeys	3F/ BF	Completion Date 2016.12						
3Incremental Cost	□Passive approaches	(35 %) □Act	tive approa	iches (25 %)			
Allocation (%)	□Renewable energy s	system (30 %)		system	(10%)			
Source of	□Government Subsid	y (%) □Pro	ject Incent	ive (%)			
Incremental Cost	$\Box \checkmark$ Self-fund (%) Donation/Indus	stry in-kind	l suppor	t (%)			
Key Technical Index	es							
Energy	Energy Consum	ption Targets	Design	Value	Average value for typical			
consumption	Annual Heating Dem	and (kWh/m ² a)	13.4	4	34.39			

Annual Cooling Demand (kWh/m ² a)		
Primary Energy Consumption kWh/(m ²)	72	
Source to Site Conversion Factor		
(Electricity)		
Primary Energy Consumption Including:	Heating/Cooling	□Lighting □
Plug		

Energy saving approaches (Yes for \checkmark)

	r	r.					
	Skylight	Solar Tub	es	Therma	al Zoning	Pa	assive Solar Heat Gain
Passive	\checkmark	Natural Ventilation					\checkmark
Approaches	Site Vegetation			Ground Cooling			Sun shading
							\checkmark
	Energy Efficient Lighting	Advanced Lighting Controls		icient liances	Load Manageme	ent	Mechanical Air Heat Recovery
Active Approaches	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
	Displacement	Radiant	Ra	diant	Air Sourc	ce	Hot Water Heat
	Ventilation	Heating	Co	oling	Heat Pur	ıр	Recovery
√							
APEC	APEC	Nearly (Net) Ze	ro Ener	gy Buildi	ng	
Asia-Pacific Economic Cooperation	Best Practice	es Informat	ion	Collecti	on Templ	ate	

Best Practices Information Collection Template

Basic Information										
Building Name	Zibo Linzi Health nursing home	Location (City)	Zibo							
Building Type	$\Box \checkmark \text{Residential} \ \Box \text{Office} \ \Box \text{School} \ \Box \text{Others (Please Specify)}$									
Heating Degree Day		Cooling Degree Day								
Net Floor Area (m^2)	4645	Treated floor area (m^2)	4645							
Number of storeys	6F/ 1BF	Completion Date	2018.03							
3Incremental Cost Allocation (%)		□Passive approaches (78.6 %) □Active approaches (21.4 %) □Renewable energy system (0 %) □Control system (0 %)								
Source of Incremental Cost	□Government Subsid	□Government Subsidy (%) □Project Incentive (%)								

 $\Box \checkmark$ Self-fund (100 %) \Box Donation/Industry in-kind support (%)

		(100 %)						
Key Technical Index	es							
	Energy C	onsumption '	Targ	ets	Design V	alue	Average value for typical	
	Annual Heatin	kWh/	′m²a)	5.07		12.68		
Energy	Annual Coolin	ng Demand (kWh/	′m²a)	8.99		22.47	
consumption	Primary Energ	on kW	/h/(m²)	20.66	5	51.7		
	Source to S	on Fac	ctor					
	Primary Energy Plug	Consumptio	n Inc	luding:	Heating/Co	ooling	□Lighting □	
Energy saving appro	aches (Yes for	()						
	Skylight	Solar Tub	es	Therma	al Zoning Pass		sive Solar Heat Gain	
Passive	\checkmark						\checkmark	
Approaches	Site Vegetation	Natural Ventilatio	n	Ground	d Cooling		Sun shading	
	\checkmark	\checkmark						
	Energy Efficient Lighting	Advanced Lighting Controls		Load Management		Mechanical Air Heat Recovery		
Active Approaches	\checkmark			\checkmark	\checkmark		\checkmark	
	DisplacementRadiantVentilationHeating			diant oling	Air Sour Heat Pun		Hot Water Heat Recovery	

Asia-Pacific Economic Cooperation	ation Dest Hactices Information Concetion Template								
Basic Information Building Name	Changpeng Car decoration manufacturing Office Location (City) Dingzhou								
Building Type	\Box Residential $\Box \checkmark$	$\Box \checkmark Office \ \Box School \ \Box Others (Please Specify)$							
Heating Degree Day		Cooling Degree Day							

APEC 100 Best Practic	e Analysis of Nearl		Asia-Pacific Economic Cooperation						
Net Floor Area (m^2)	2859	Tr	eated f	loor area	(m ²)		1657		
Number of storeys	3F/	BF	ate		2016.11				
3Incremental Cost	□Passive appro	oaches (%)		ive approa	ches (%)		
Allocation (%)	□Renewable e	nergy syste	m (%)[Control s	system	(%)		
Source of	□Government	Subsidy (%)	□Pro	ject Incent	ive (%)		
Incremental Cost	$\Box \checkmark Self-fund$	(%) 🗆	Donat	ion/Indus	stry in-kind	l suppo	ort (%)		
Key Technical Index	es								
	Energy C	Energy Consumption Targets Design Value Average value typical							
	Annual Heatin	Annual Heating Demand (kWh/m ² a)							
Energy	Annual Coolin	Annual Cooling Demand (kWh/m ² a)							
consumption	Primary Energ	y Consumpt	tion kW	/h/(m²)	120)			
	Source to S		ion Fa	ctor					
	Primary Energy Plug	Electricity) Consumpt	ion Inc	luding:⊏	Heating/C	Cooling	E Lighting		
Energy saving appro	aches (Yes for	/)							
	Skylight	Solar Tu	ıbes	Therm	al Zoning	Pas	ssive Solar Heat Gain		
Passive	\checkmark						\checkmark		
Approaches	Site Vegetation	Natur Ventilat		Ground	d Cooling		Sun shading		
		\checkmark					\checkmark		
	Energy Efficient Lighting	Advanced Lighting Controls	Ef	ficient bliances	Load Managem	ent	Mechanical Air Heat Recovery		
Active Approaches	\checkmark			\checkmark	\checkmark		\checkmark		
	Displacement Ventilation	Radiant Heating		adiant ooling	Air Source Heat Pump		Hot Water Heat Recovery		
		√		√					

APEC Nearly (Net) Zero Energy Building Asis-Pacific Ecomposite Cooperation Best Practices Information Collection Template									
Asia-Pacific Economic Cooperation	Best Practices	s Informatic	on Collecti	ion Temp	late				
Basic Information									
Building Name	Binhai New Are Community Cultu Activity Center	ıral L	ocation (Ci	ty)		Tianjin			
Building Type		□Residential □Office □School □Others (Please Specify)Activity Center							
Heating Degree Day		Coc	ling Degree	Day					
Net Floor Area (m^2)	9864.89	Treate	d floor area	(m ²)		6977.73			
Number of storeys	4F/ 1 E	BF Co	ompletion D	late		2015			
3Incremental Cost	□Passive approa	aches (%) 🛛 🗆 Act	ive approa	ches (%)			
Allocation (%)	□Renewable en	□Renewable energy system (%) □Control system (%)							
Source of	Source of Government Subsidy (%) Project Incentive (%)								
Incremental Cost	$\Box \checkmark$ Self-fund (%) \Box Donation/Industry in-kind support (%)								
Key Technical Index	es								
	Energy Co	nsumption Ta	rgets	Design	Value	Average value for typical			
	Annual Heating	Demand (kW	Wh/m ² a)	11.53 8.95					
Energy	Annual Cooling	D							
		g Demand (KV	Vh/m ² a)	8.9	5				
consumption	Primary Energy			8.9	5				
	Primary Energy Source to Sit	Consumption te Conversion	kWh/(m²)	8.9	5				
	Primary Energy Source to Sit	Consumption te Conversion Electricity)	kWh/(m ²) Factor						
	Primary Energy Source to Sit (E Primary Energy Plug	Consumption te Conversion Electricity) Consumption	kWh/(m ²) Factor						
consumption	Primary Energy Source to Sit (E Primary Energy Plug	Consumption te Conversion Electricity) Consumption	kWh/(m ²) Factor Including:		ooling	Lighting D			
consumption Energy saving appro	Primary Energy Source to Sit (E Primary Energy Plug paches (Yes for√	Consumption te Conversion Electricity) Consumption	kWh/(m ²) Factor Including:	lHeating/C	ooling				
consumption	Primary Energy Source to Sit (E Primary Energy Plug Paches (Yes for√ Skylight	Consumption te Conversion Electricity) Consumption	kWh/(m²) Factor Including:	Heating/C al Zoning	ooling	ive Solar Heat Gain			
consumption Energy saving appro	Primary Energy Source to Sit (E Primary Energy Plug Daches (Yes for√ Skylight √	Consumption te Conversion Electricity) Consumption	kWh/(m²) Factor Including:	lHeating/C	ooling				
consumption Energy saving appro Passive	Primary Energy Source to Site (E Primary Energy Plug Paches (Yes for√ Skylight √ Site	Consumption te Conversion Electricity) Consumption	kWh/(m²) Factor Including:	Heating/C al Zoning	ooling	ive Solar Heat Gain			

APEC 100 Best Practic	e Analysis of Nearl		Asia-Pacific Economic Cooperation					
	Efficient	Ligh	ting	Appliances	Managen	nent	Recovery	
	Lighting	Con	trols					
	\checkmark	√		\checkmark	√		\checkmark	
Active Approaches								
·····	Displacement	Radia		Radiant	Air Sou		Hot Water He	eat
	Ventilation	Heating		Cooling	Heat Pu	imp	Recovery	
		\checkmark		\checkmark				
	APEC	Nearly	gy Build	ling				
Asia-Pacific Economic Cooperation	Best Practic	•			0.	0		
Basic Information								
	Tianjin Eco-City	Public						
Building Name	House Phase	Location (Cit					Tianjin	
Building Type	□ √ Residenti	al 🗆	Office	□School	Others	(Please	Specify)	
Heating Degree Day			C	ooling Degree	Day			
	5000			. 1.0	(2)		4(70	
Net Floor Area (m^2)	5802		Trea	ted floor area	(m²)		4672	
Number of storeys	F/	BF		Completion D	Date 2018.01			
3Incremental Cost	□Passive appro	oaches	(30)%) □A	ctive appr	oaches ((60%)	
$\mathbf{A} = 1 1 1 1 1 1 1 1$			·	,			、	
Allocation (%)	□Renewable e	nergy s	ystem	(10%)	Contro	ol systen	n (%)	
	□Government	Subsid	v (%) □Pro	ject Incen	tive (%)	
Source of		Subsid	у (<i>/</i> 0 / □ 110	yeet meen	uve (70 J	
Incremental Cost	$\Box \checkmark Self-fund$	(100	%)	Donation/In	dustry in-	kind sup	oport (%)	
Key Technical Index	es							
							Average valu	e for
	Energy C	onsum	ption '	Targets	Design	Value	typical	
	Annual Heatin	o Dem	and ()	kWh/m ² a)	13.	21	33.02	
Energy	Annual Coolin	ıg Dem	and (kWh/m²a)	16.2	23	40.58	
consumption	Primary Energy Consumption kWh/(m²)48.24100							
	Source to Site Conversion Factor							
	(Electricity) Primary Energy Consumption Including: Heating/Cooling Lighting							
	Primary Energy Plug	Const	imptio	in including:	Heating/C	Jooling	□Lighting	
-								
Energy saving appro	oaches (Yes forv	()						
	Skylight	Sol	ar Tub	es Therm	al Zoning	Pass	sive Solar Heat	Gain

	\checkmark							
Passive Approaches	Site Vegetation	Natural Ventilatio		Ground Cooling			Sun shading	
		\checkmark					\checkmark	
	Energy Efficient Lighting	Lighting		ïcient liances	Load Manageme	ent	Mechanical Air Heat Recovery	
Active Approaches	\checkmark			\checkmark				
	Displacement Ventilation	Radiant Heating		diant oling	Air Souro Heat Pun		Hot Water Heat Recovery	
				6	\checkmark	r		

APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template									
Basic Information									
Building Name	Chengjian Hua Kingdergard	-		Loca	ation (Cit	y)	Weihai		
Building Type		$\Box Residential \ \Box Office \ \Box \checkmark School \ \Box Others (Please Specify)$							
Heating Degree Day		Cooling Degree Day							
Net Floor Area (m^2)	<u>5647.66</u>		Trea	ted fl	oor area	(m ²)		<u>5174.06</u>	
Number of storeys	F/	BF		Comp	pletion D	ate			
3Incremental Cost	□Passive appro	baches	(70)%)		ctive approa	aches	(25 %)	
Allocation (%)	□Renewable er	nergy s	ystem	(2	%)		system	n (3%)	
Source of	Source of Government Subsidy (50 %) Project Incentive (%)								
Incremental Cost	□Self-fund (50 %) □Donation/Industry in-kind support (%)								
Key Technical Indexes									
	Energy Co	onsum	ption [Farge	ets	Design V	alue	Average val typica	
	Annual Heatin	g Dem	and (l	kWh/	m²a)	<u>13.87</u>	<u>7</u>		
Energy	Annual Coolin	g Dem	and (1	kWh/	m²a)	<u>9.06</u>			
consumption	Primary Energy	y Consi	umptio	n kW	/h/(m²)	<u>114.5</u>	6	<u>120</u>	
	Source to S			n Fac	ctor				
	(Primary Energy	Electric Consu		n Incl	uding:	Heating/Co	ooling		
	Plug		1		e	U	0	0 0	
Energy saving appro	baches (Yes for γ	/)							
	Skylight	Sola	ar Tube	es	Therm	al Zoning	Pass	sive Solar Heat	t Gain
Passive	\checkmark							\checkmark	
Approaches	Site		atural		Ground	d Cooling		Sun shading	
Approaches	Vegetation	Ver	ntilatio	n				√	
	Energy	Adva		Eff	ïcient	Load		Mechanical Ai	r Heat
Active Approaches	Efficient	Ligh			liances	Manageme		Recovery	

Lighting	Controls			
\checkmark		\checkmark		\checkmark
Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery
\checkmark	\checkmark		\checkmark	

APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template										
Asia-Pacific Economic Cooperation Basic Information	Best Practice	s into	ormat	10n (Collecti	on Temp	late			
Building Name	The Home of Fu	iture	_	Loca	tion (Cit	y)		Weifang		
Building Type	Residential	$\Box Residential \ \Box \lor Office \ \Box School \ \Box Others (Please Specify)$								
Heating Degree Day			Co	ooling	g Degree	Day				
Net Floor Area (m ²)	2287		Trea	ted fl	oor area	(m ²)		2023		
Number of storeys	3F/ 1 H	3F		Comp	pletion D	ate		2014.12		
3Incremental Cost	□Passive approa	aches	(50	%)		ctive appro	aches	(10 %)		
Allocation (%) □Renewable energy system (10%) □Control system (30%)										
Source of Government Subsidy (60 %) Project Incentive (%)										
Incremental Cost Self-fund (40 %) Donation/Industry in-kind support (%)										
Key Technical Indexes										
	Energy Co	nsum	ption 1	Farge	ets	Design V	alue	Average value for typical		
	Annual Heating	g Dema	and (1	⟨Wh/	m²a)	3.72	2	≤15		
Energy	Annual Cooling	g Dem	and (l	kWh/	m²a)	13.3	1	≤15		
consumption	Primary Energy	Consu	umptio	n kW	/h/(m²)	113.0	7	≤120		
	Source to Si (E	te Con Electric		n Fac	ctor					
	Primary Energy Plug			n Incl	uding:⊏	Heating/Co	ooling	□Lighting □		
Energy saving appro	aches (Yes for√)								
	Skylight	Sola	ar Tube	es	Therm	al Zoning	Pas	sive Solar Heat Gain		
Passive	\checkmark							\checkmark		
Approaches	Site Vegetation		atural ntilatio	n	Ground	d Cooling		Sun shading		
			√							
Active Approaches	Energy Efficient	Adva Ligh			icient liances	Load Manageme		Mechanical Air Heat Recovery		

Lighting	Controls			
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery
			\checkmark	

Asia-Pacific Economic Cooperation	APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template									
Basic Information										
Building Name	Zhongsen Honggu Yipin Kindergarden Location (City)						Nanchang			
Building Type	$\square Residential \square Office \square \checkmark School \square Others (Please Specify)$									
Heating Degree Day			C	ooling	g Degree	Day				
Net Floor Area (m^2)	3881.96		Trea	ted fl	oor area	(m ²)	3525.62			
Number of storeys	3F/ 1	BF		Comp	pletion D	ate		2017.12		
3Incremental Cost	□Passive appro	□Passive approaches (%) □Active approaches (%)								
Allocation (%)	□Renewable energy system (%) □Control system (%)									
Source of	Government	Subsid	у (%)	□Pro	ject Incenti	ve (%)		
Incremental Cost	\Box \checkmark Self-fund (100%) \Box Donation/Industry in-kind support (%)									
Key Technical Indexes										
	Energy Co	onsum	ption '	Farge	ets	Design V	gn Value Average valu typical			
	Annual Heating	Annual Heating Demand (kWh/m²a)1.4Annual Cooling Demand (kWh/m²a)22.Primary Energy Consumption kWh/(m²)62.						13.73		
Energy	Annual Coolin							46.42		
consumption	Primary Energy							138.52		
	Source to S			n Fac	ctor					
	(Electricity) Primary Energy Consumption Including: Heating/Cooling Lighting Plug							□Lighting □		
Energy saving approaches (Yes for√)										
	Skylight Solar Tubes Thermal Zoning Passive Solar Heat Ga									
Passive	\checkmark						\checkmark			
Approaches	Site Vegetation		Natural Groum entilation √		Ground Cooling			Sun shading		
	√						\checkmark			
Active Approaches	Energy Efficient	Adva Ligh			ïcient liances	Load Manageme		Mechanical Air Heat Recovery		

Lighting	Controls			
\checkmark	\checkmark	\checkmark		\checkmark
Displacement	Radiant	Radiant	Air Source	Hot Water Heat
Ventilation	Heating	Cooling	Heat Pump	Recovery
			\checkmark	

APEC Asia-Pacific Economic Cooperation	APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template								
Basic Information									
Building Name	Water Front Zero Energy HomeLocation (City)						Qinhuagndao		
Building Type	$\Box \checkmark Residential \ \Box Office \ \Box School \ \Box Others (Please Specify)$								
Heating Degree Day			C	ooling	g Degree	Day			
Net Floor Area (m^2)	6718.4		Trea	ted fl	oor area	(m ²)	6718.4		
Number of storeys	18F/ 1	BF		Comp	oletion D	ate		2014.06	
3Incremental Cost	□Passive approaches (%) □Active approaches (%)								
Allocation (%)	□Renewable energy system (%) □Control system (%)								
Source of Incremental Cost	□Government Subsidy (%) □Project Incentive (%) □ √ Self-fund (%) □Donation/Industry in-kind support (%)								
Key Technical Indexes									
	Energy C	onsum	ption 7	Farge	ets	Design Value		Average value for typical	
	Annual Heatin	g Dem	and (1	kWh/	m²a)	7.66	7.66 ≤15		
Energy	Annual Coolin	ig Dem	and (1	kWh/	m²a)	8.12		≤15	
consumption	Primary Energy	y Cons	umptio	n kW	′h/(m²)	108	108 120		
	Source to S	ite Coi Electri		n Fac	tor				
	Primary Energy Consumption Including: Heating/Cooling Lighting Plug								
Energy saving approaches (Yes for√)									
	Skylight Solar Tubes Thermal Zoning Passive Solar Heat C								
Density	\checkmark						\checkmark		
Passive	Site		Natural		Ground Cooling		Sun shading		
Approaches	Vegetation √	Vegetation Ventilation							
Active Approaches	Energy Efficient	Adva Ligh	inced		icient liances	Load Manageme		Mechanical Air Heat Recovery	

	Lighting	Controls			
	\checkmark	\checkmark	\checkmark		\checkmark
	Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery
	\checkmark			\checkmark	
Г

APEC Nearly (Net) Zero Energy Building Asia-Pacific Economic Cooperation Best Practices Information Collection Template								
Basic Information								
Building Name	CCT TECH Net Energy Buildi			Loca	tion (Cit	ty)		Chengdu
Building Type	Residential	$\Box \checkmark$	Office		School	Others (Please	Specify)
Heating Degree Day	Cooling Degree Day							
Net Floor Area (m^2)	4409.69		Trea	ted fl	oor area	(m ²)		4145.4
Number of storeys	4F/]	BF		Com	pletion D	ate		2016.03
3Incremental Cost	□Passive appro	aches	(%	6)	□Act	ive approac	hes (%)
Allocation (%)	□Renewable er	nergy s	system	(%)[□Control sy	ystem	(%)
Source of Government Subsidy (%) Project Incentive (%)								
Incremental Cost $\Box \checkmark$ Self-fund (100 %) \Box Donation/Industry in-kind support (%)								
Key Technical Indexes								
	Energy Co	onsum	ption 7	Farge	ets	Design V	alue	Average value for typical
	Annual Heating	g Dem	and (1	kWh/	m²a)	3.03		
Energy	Annual Coolin	g Dem	and (1	kWh/	m²a)	40.89		
consumption	Primary Energy	Cons	umptio	n kW	/h/(m²)	60		
	Source to Si	ite Coi Electri		n Fac	tor			
	Primary Energy			n Incl	uding:	Heating/Co	ooling	□Lighting □
Enonor	Plug	1						
Energy saving appro		<u> </u>	F 1			177	E	
	Skylight	Sol	ar Tubo	es	Therm	al Zoning	Pass	sive Solar Heat Gain
Passive	\checkmark		\checkmark					\checkmark
Approaches	Site Vegetation		Vatural ntilatio	n	Ground	d Cooling		Sun shading
	√		√	11		\checkmark		\checkmark
Active Approaches	Energy	Adva	inced		icient	Load		Mechanical Air Heat
Active Approaches	Efficient	Ligh	nting	App	liances	Manageme	ent	Recovery

Lighting	Controls			
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery

APEC 100 Best Practic	e Analysis of Nearly	/Net Zer	o Energy	Building			Economic Cooperation		
APEC	APEC N	early ((Net) Ze	ro Ener	gy Buildi	ng			
Asia-Pacific Economic Cooperation	Best Practices	s Infor	mation	Collecti	ion Templ	ate			
Basic Information									
Building Name	Shoukai BrownStone Zero Energy Buildi		Loc	ation (Cit	ty)		Xiamen		
Building Type	□ √ Residentia	$\Box \checkmark Residential \ \Box Office \ \Box School \ \Box Others (Please Specify)$							
Heating Degree Day			Coolir	g Degree	Day				
Net Floor Area (m^2)	1500		Treated f	loor area	(m ²)		1500		
Number of storeys	3F/1 E	BF	Com	pletion D	ate		2016.2		
3Incremental Cost Allocation (%)		□Passive approaches (50 %) □Active approaches (30 %) □Renewable energy system (10 %) □Control system (10 %)							
Source of □Government Subsidy (%) □Project Incentive (%) Incremental Cost □ √ Self-fund (100 %) □Donation/Industry in-kind support (%)									
Key Technical Index	es								
	Energy Co	nsumpt	tion Targ	ets	Design V	alue	Average value for typical		
	Annual Heating	g Demar	nd (kWh	/m²a)	1		5		
Energy	Annual Cooling	g Demar	nd (kWh	/m²a)	34		34		
consumption	Primary Energy	Consun	nption kV	Vh/(m²)	47		60		
	Source to Sit	te Conv Electricit		ctor					
	Primary Energy Plug	Consum	ption Inc	luding:⊏	Heating/Co	ooling	□Lighting □		
Energy saving appro	oaches (Yes for√)							
	Skylight	Solar	Tubes	Therm	al Zoning	Pass	sive Solar Heat Gain		
Passive	\checkmark						\checkmark		
Approaches	Site Vegetation		tural ilation	Ground	d Cooling		Sun shading		
	~		\checkmark				\checkmark		
Active Approaches	Energy Efficient	Advano Lightin		ficient oliances	Load Manageme		Mechanical Air Heat Recovery		

Lighting	Controls			
\checkmark		\checkmark	\checkmark	
Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery
			\checkmark	

Asia-Pacific Economic Cooperation								
Basic Information								
Building Name	Sheng Rong I Kindergarde			Loca	tion (Cit	.y)		Dongguan
Building Type	□Residential	$\Box Residential \ \Box Office \ \Box \checkmark School \ \Box Others (Please Specify)$						
Heating Degree Day	Cooling Degree Day					Day		
Net Floor Area (m^2)	3400		Treated floor area (m^2)			(m ²)		0
Number of storeys	3F/	BF		Comp	pletion D	ate		2012.06
3Incremental Cost	□Passive appro	oaches	(0	%)	□Ac	tive approa	iches (0 %)
Allocation (%)	□Renewable e	nergy s	ystem	(%) E	Control s	ystem	(%)
Source of Incremental CostGovernment Subsidy (%)Project Incentive (%)Self-fund (%)Donation/Industry in-kind support (%)								
Key Technical Index	Key Technical Indexes							
	Energy C	onsum	ption '	Farge	ets	Design Value		Average value for typical
	Annual Heatin	g Dem	and (l	kWh/	m²a)	0		
Energy	Annual Coolin	ig Dem	and (1	kWh/	m ² a)	0		
consumption	Primary Energy	y Cons	umptio	n kW	⁷ h/(m²)	5		
	Source to S	ite Cor Electri		n Fac	tor			
	Primary Energy Plug			n Incl	uding:	Heating/Co	ooling	□Lighting □
Energy saving appro	aches (Yes for	()						
	Skylight	Sola	ar Tub	es	Therm	al Zoning	Pass	sive Solar Heat Gain
Passive	\checkmark							
Approaches	Site Vegetation		latural ntilatio	n	Ground	d Cooling		Sun shading
	√	, 01	√					\checkmark
Active Approaches	Energy Efficient	Adva Ligh			icient liances	Load Manageme		Mechanical Air Heat Recovery

Lighting	Controls			
Displacement	Radiant	Radiant	Air Source	Hot Water Heat
Ventilation	Heating	Cooling	Heat Pump	Recovery

APEC Nearly (Net) Zero Energy Building Asit-Facility Best Practices Information Collection Template									
Basic Information						<u> </u>			
Building Name	CIFAL Training C	enter		Loca	tion (Cit	y)		Zhenjiang	
Building Type	Residential	$\Box \checkmark$	Office		School	Others ()	Please	e Specify)	
Heating Degree Day		Cooling Degree Day							
Net Floor Area (m^2)	12786		Trea	ted fl	oor area	(m ²)		12786	
Number of storeys	6F/ I	BF		Comp	oletion D	ate		2017.10	
3Incremental Cost	□Passive appro	□Passive approaches (92 %) □Active approaches (8 %)							
Allocation (%)	□Renewable en	iergy s	system	(%)[Control s	ystem	(%)	
Source of Government Subsidy (40 %) Project Incentive (%)									
Incremental Cost $\Box \checkmark$ Self-fund (60 %) \Box Donation/Industry in-kind support (%)									
Key Technical Indexes									
	Energy Co	onsum	ption 1	Farge	ets	Design V	alue	Average value for typical	
	Annual Heating	g Dem	and (1	cWh/	m²a)	5.6		16.0	
Energy	Annual Cooling	g Dem	and (1	kWh/	m²a)	55.7		87.0	
consumption	Primary Energy	Cons	umptio	n kW	/h/(m²)	112		280	
	Source to Si (I	te Cor Electri		n Fac	ctor				
	Primary Energy Plug	Consu	Imption	n Incl	uding:⊏	Heating/Co	ooling	g □Lighting □	
Energy saving appro	aches (Yes for√)							
	Skylight	Sol	ar Tube	es	Therm	al Zoning	Pas	ssive Solar Heat Gain	
Passive	\checkmark		\checkmark					\checkmark	
Approaches	Site Vegetation		Vatural ntilatio	n	Ground	d Cooling		Sun shading	
	√	, 01	√						
Active Approaches	Energy Efficient	Adva Ligh			icient liances	Load Manageme		Mechanical Air Heat Recovery	

Lighting	Controls			
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery
				\checkmark

APEC Nearly (Net) Zero Energy Building								
Asia-Pacific Economic Cooperation	Best Practices	s Informa	tion Co	ollecti	on Temj	olate		
Basic Information								
Building Name	Kajima Technio Research Institu building		Locatior	n (City))		Tokyo	
Building Type	□Residential	□Residential □Office □School ☑Others (Please Specify)_Institute_						
Heating Degree Day	1,499 (HDD18	8) Co	oling Do	egree D	Day 24		48 (CDD24)	
Net Floor Area (m^2)	9,000	9,000 Treated floor area						
Number of storeys	5F	C	Completi	ion Dat	e	2	011,January	
Incremental Cost	□Passive approa	aches (%)	□Acti	ve approa	ches (%)	
Allocation (%)	□Renewable en	ergy system	(%	6) C	Control	system	(%)	
Source of	Source of Government Subsidy (%) Project Incentive (%)							
Incremental Cost	□Self-fund (%) □Do	nation/I	Industry	v in-kind s	upport	(%)	
Key Technical Index	Key Technical Indexes							
	Energy Co	nsumption	Targets	5	Design	Value	Average value for typical	
	Energy Co Annual Heating	-			Design	Value		
Energy		g Demand (kWh/m ²	² a)	Design	Value		
Energy consumption	Annual Heating Annual Cooling Primary Energy	g Demand (g Demand (Consumptio	kWh/m² kWh/m² on kWh/	² a) ² a) ¹ /(m ²)	Design 25			
	Annual Heating Annual Cooling Primary Energy Source to Site C	g Demand (g Demand (Consumption Conversion F	kWh/m ² kWh/m ² on kWh/ ² actor (E	² a) ² a) /(m ²) Electric	25	4	typical	
	Annual Heating Annual Cooling Primary Energy	g Demand (g Demand (Consumption Conversion F	kWh/m ² kWh/m ² on kWh/ ² actor (E	² a) ² a) /(m ²) Electric	25	4		
	Annual Heating Annual Cooling Primary Energy Source to Site C Primary Energy	g Demand (g Demand (Consumptio Conversion F Consumptio	kWh/m ² kWh/m ² on kWh/ ² actor (E	² a) ² a) /(m ²) Electric	25	4	typical	
consumption	Annual Heating Annual Cooling Primary Energy Source to Site C Primary Energy	g Demand (g Demand (Consumptio Conversion F Consumptio	kWh/m ² kWh/m ² on kWh/ Factor (E	² a) ² a) /(m ²) Electric ding:□	25	4 Cooling	typical	
consumption Energy saving appro	Annual Heating Annual Cooling Primary Energy Source to Site C Primary Energy ☑Plug Paches (Yes for√	g Demand (g Demand (Consumptio Conversion F Consumptio	kWh/m ² kWh/m ² on kWh/ Factor (E	² a) ² a) /(m ²) Electric ding:□	25 Heating/C	4 Cooling	typical	
consumption Energy saving appro Passive	Annual Heating Annual Cooling Primary Energy Source to Site C Primary Energy ☑Plug aches (Yes for√ Skylight Site	g Demand (g Demand (Consumption Conversion F Consumption) Solar Tub Natural	kWh/m² kWh/m² on kWh/ Factor (E on Incluc	² a) ² a) /(m ²) Electric ding:□ Therma	25 Heating/C al Zoning	4 Cooling	typical typical	
consumption Energy saving appro	Annual Heating Annual Cooling Primary Energy Source to Site C Primary Energy Ø Plug aches (Yes for / Skylight	g Demand (g Demand (Consumptio Conversion F Consumptio	kWh/m² kWh/m² on kWh/ Factor (E on Incluc	² a) ² a) /(m ²) Electric ding:□ Therma	25 Heating/C	4 Cooling	typical	
consumption Energy saving appro Passive	Annual Heating Annual Cooling Primary Energy Source to Site C Primary Energy ☑Plug aches (Yes for√ Skylight Site	g Demand (g Demand (Consumption Conversion F Consumption) Solar Tub Natural	kWh/m² kWh/m² on kWh/ Factor (E on Incluc	² a) ² a) /(m ²) Electric ding:□ Therma Ground	25 Heating/C al Zoning	4 Cooling Pass	typical typical typical sive Solar Heat Gain Sun shading	

 Lighting	Controls						
Displacement	Radiant	Radiant	Air Source	Hot Water Heat			
Ventilation	Heating	Cooling	Heat Pump	Recovery			
	\checkmark	\checkmark					
Other	Task Ambient H/C Visualization						

Г

APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template									
Economic Cooperation Basic Information	Best Practice	s informa		Jonecu	on Temp	ate			
Building Name	Taisei Sappor Building	ro	Locatio	on (City))		Sapporo		
Building Type		☑Office	□Sc	hool [Others (P	lease S	pecify)		
Heating Degree Day	3,587 (HDD1	8) Co	oling I	Degree I	Day	2 (CDD24)			
Net Floor Area (m^2)	7,000	Trea	ated flo	oor area	(m ²)				
Number of stories	8F	C	Comple	tion Dat	e		2006,June		
Incremental Cost	□Passive appro	\Box Passive approaches (- %) \Box Active approaches (- %)							
Allocation (%)	□Renewable er	□Renewable energy system (- %) □Control system (- %)							
Source of Incremental CostGovernment Subsidy (- %)Project Incentive (- %)Self-fund (- %)Donation/Industry in-kind support (- %)									
Key Technical Indexes									
	Energy Co	onsumption	Targe	ets Design		alue	Average value for typical		
Energy	Annual Heating	g Demand (kWh/m ² a)			-		-		
consumption	Annual Cooling	g Demand (mand (kWh/m²a)		-		-		
	Primary Energy	Consumption	on kW	h/(m²)	224		505		
	Source to Site C	Conversion F	Factor	(Electric	2.	.71(kW	/h _{prim} / kWh)		
	Primary Energy	Consumptio	n Incl	ıding:☑	Heating/Co	oling	ZLighting ☑Plug		
Building energy codes or standards		Act on the	e Ratio	onal Use	of Energy	/ JAPA	N		
Energy saving appro	oaches (Yes for√)							
	Skylight	Solar Tub	es	Therma	al Zoning	Pass	sive Solar Heat Gain		
	\checkmark				-		-		
Passive	Site Vegetation	Natural Ventilatio		Ground	l Cooling		Sun shading		
Approaches	-	\checkmark			-		-		
	Others	Outer ins		•	ighting sys ndow size		-soleil), Eco boid, y-e glass		
Active Approaches	Energy	Advanced	1	cient	Load		Mechanical Air Heat		

	Efficient	Lighting	Appliances	Management	Recovery				
	Lighting	Controls							
	\checkmark	-	\checkmark	-	-				
	Displacement	Radiant	Radiant	Air Source	Hot Water Heat				
	Ventilation	Heating	Cooling	Heat Pump	Recovery				
	-	\checkmark	\checkmark	√	-				
	Other	Thermal active building system Free cooling							

	APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building Economic Cooperation APEC Nearly (Net) Zero Energy Building										
Asia-Pacific Economic Cooperation	Best Practice	•				0.	0				
Basic Information											
Building Name	21 Komaba Ce forEducation Excellence buil	nal	L	ocati	on (City))		Tokyo			
Building Type	□Residential □Office □School ☑Others (Please Specify) <u>Multi-purpose</u>										
Heating Degree Day	1,499 (HDD)	18)	Coo	ling	Degree I	Day		248 (CDD24)			
Net Floor Area (m^2	4,477		Treate	ed flo	oor area	(m ²)		4,477			
Number of storeys	5		Co	ompl	etion Dat	e		May, 2011			
Incremental Cost Allocation (%)	□Passive appro			5) (ive appro	·	· · · ·			
Information (%) Renewable energy system (%) Control system (%) Source of Incremental Cost Government Subsidy (67 %) Project Incentive (%) Self-fund (33%) Donation/Industry in-kind support (%)											
Key Technical Index	es										
	Energy Co	onsump	otion T	arge	ets	Desigr	n Value	Average value for typical			
	Annual Heatin	g Dema	und (k	Wh/	m²a)						
Energy consumption	Annual Coolin	g Dema	und (k	Wh/	m²a)						
consumption	Primary Energy	y Consu	mption	n kW	/h/(m²)	1′	70				
	ource to Site Cor										
	Primary Energy ☑Plug	Consu	mption	Incl	uding:□	Heating/	Cooling	g □Lighting			
Energy saving appro	aches (Yes for γ	()									
	Skylight	Sola	r Tube	s	Therma	al Zoning	g Pa	ssive Solar Heat Gain			
	\checkmark							\checkmark			
D	Site Natural Count Could							Cun shading			
Passive		Ground Cooling Sun shading									
Passive Approaches	Site Vegetation		tilatior	1	Ground	l Cooling	5	Sun shading √			
				1		l Cooling		√			

.. .

APEC 100 Best Practic	e Analysis of Nearly/Net Zero Energy Building									
	Efficient	Ligh	nting	Appliances	Mana	gement	Recovery			
	Lighting	Con	trols							
	~	1	ŗ				\checkmark			
Active Approaches	Displacement	Radia	ant	Radiant	Air Source		Hot Water Heat			
Active Approaches	Ventilation	Heating		Cooling	Hea	t Pump	Recovery			
		√		√						
	Other		Ι	integr Desiccant drive		/stem GS				
APEC	APEC N	Nearly	y (Net) Zero Ener	gy Bu	uilding				
Asia-Pacific Economic Cooperation	Best Practice	es Info	ormat	tion Collecti	on Te	emplate				
Basic Information										
Building Name	Taisei's ZE	В	Ι	Location (City))		Yokohama			
Building Type	Residentia	l ⊠C	Office	□School □	Othe	rs (Please	Specify)			
Heating Degree Day	1564(HDD1	8)	Co	oling Degree I	Day		191(CDD24)			
Net Floor Area (m^2)	1,277		Treat	ted floor area	(m ²)					
Number of stories	3F		C	ompletion Dat	te		2014,May			
Incremental Cost	□Passive appro	oaches	(-	%) □Ac	tive ap	proaches	(- %)			
Allocation (%)	□Renewable e	nergy s	system	(- %)	□Con	trol syste	m (- %)			
Source of	□Government	Subsid	у(-	%) □Pro	oject Iı	ncentive ((- %)			
Incremental Cost	□Self-fund (- %)) 🗆 D	onation/Indus	try in-l	kind supp	ort (- %)			
Key Technical Index	es									
	Energy C	onsum	ption '	Targets	Desi	ign Value	Average value for typical			
	Annual Heatin	ig Dem	and (1	kWh/m²a)		25	-			
Energy consumption	Annual Coolin	ıg Dem	and (kWh/m²a)		23	-			
	Primary Energy	y Cons	umptic	on kWh/(m²)		-8.3	505			
	Source to S	ite Co	nversio	on Factor	El	ectricity:2	2.71(kWh _{prim} / kWh)			
	(Electri	city)			Fuel:12.	5(kWh _{prim} / Nm ³)			
	Primary Energy	Const	umptio	n Including:	Heatin	ng/Coolin	g ☑Lighting☑Plug			
Building energy codes or standards		Act	t on the	e Rational Use	of En	ergy / JAl	PAN			
Energy saving appro	oaches (Yes for	/)								

APEC 100 Best	t Practice Analysis	of Nearly/Net Zero	Energy Building
---------------	---------------------	--------------------	-----------------

APEC 100 Best Practic	e Analysis of Nearl	y/Net Zero En		Economic Cooperation			
	Skylight	Solar Tub	es	Therm	al Zoning	Pa	assive Solar Heat Gain
	\checkmark	-			\checkmark		\checkmark
Passive Approaches	Site Vegetation	Natural Ventilation		Ground Cooling			Sun shading
Approaches	~	\checkmark			\checkmark		\checkmark
	Others (Please Specify)	Balcony,	Low-		Day-lighting water utiliz	stem (T-Light Cube), n	
	Energy Efficient Lighting	Advanced Lighting Controls		ïcient liances	Load Management		Mechanical Air Heat Recovery
	\checkmark	\checkmark		\checkmark	-		-
A	Displacement	Radiant	Ra	diant	Air Sour	ce	Hot Water Heat
Active Approaches	Ventilation	Heating	Co	oling	Heat Pun	ъp	Recovery
	-	\checkmark		\checkmark	~		-
	Other (Please Specify)		erma	l active b	•	tem,	tion sensor (T-Zone Personal air diffuser, BIPV

APEC 100 Best Practic		·	(Net) Ze		gy Build	ing				
Asia-Pacific Economic Cooperation	Best Practice	s Info	ormation	Collecti	on Temp	late				
Basic Information										
Building Name	Hokusetsu Offic The Kansai Ele Power Co., In	ctric	Locat	ion (City)			Osaka			
Building Type		□0	office $\Box S$	chool [Others (F	lease S	pecify)			
Heating Degree Day	1,472 (HDD18)Cooling Degree Day337 (CDD24)									
Net Floor Area (m^2	1,603		Treated fl	oor area ((m ²)		8,453			
Number of storeys	6F		Compl	etion Dat	e	2	012, August			
Incremental Cost	□Passive appro	baches	(%)	□Acti	ve approad	ches (%)			
Allocation (%)	Renewable er	□Renewable energy system (%) □Control system (%)								
Source of	□Government Subsidy (%) □Project Incentive (%)									
Incremental Cost	St Self-fund (%) Donation/Industry in-kind support (%)									
Key Technical Index	es									
	Energy Co	onsumj	ption Targ	ets	Design	Value	Average value for typical			
	Annual Heating	g Dema	and (kWh/	/m²a)	0.4					
Energy	Annual Coolin	g Dema	and (kWh/	/m²a)	32.0	5				
consumption	Primary Energy	v Const								
	Primary Energy Consumption kWh/(m ²) 146.0									
	ource to Site Con		-		146.	0				
	ource to Site Con Primary Energy Plug	versio	n Factor (El	lectricity)			□Lighting □			
Energy saving appro	Primary Energy Plug	version Consu	n Factor (El	lectricity)			□Lighting □			
Energy saving appro	Primary Energy Plug	version Consu	n Factor (El	lectricity)		ooling	Lighting D			
	Primary Energy Plug Daches (Yes for√	version Consu	n Factor (El	lectricity) luding:	Heating/C	ooling				
Energy saving appro	Primary Energy Plug Daches (Yes for√	version Consu ') Sola	n Factor (El	lectricity) luding:	Heating/C Il Zoning √	ooling	ive Solar Heat Gain			
	Primary Energy Plug Daches (Yes for√ Skylight	version Consu ') Sola	n Factor (El mption Inc. ar Tubes	lectricity) luding:	Heating/C al Zoning	ooling				
Passive	Primary Energy Plug Daches (Yes for√ Skylight Site	version Consu ') Sola	n Factor (El mption Inc ar Tubes atural	lectricity) luding: Therma Ground	Heating/C Il Zoning √	ooling	ive Solar Heat Gain			

APEC 100 Best Practic	e Analysis of Nearly/Net Zero Energy Building											
	Efficient	Light	ing	Appliances	Mana	gement	Recovery					
	Lighting	Contr	rols									
	√	~		\checkmark	\checkmark		\checkmark					
Active Approaches	Displacement	Radiar	nt	Radiant	Air	Source	Hot Water Heat					
	Ventilation	Heatin	ıg	Cooling	Heat	t Pump	Recovery					
						~						
	APEC Nearly (Net) Zero Energy Building											
Asia-Pacific Economic Cooperation	Best Practices Information Collection Template											
Basic Information												
	Akasaka K To	wer										
Building Name	building	/wei	I	location (City))		Tokyo					
Duilding T	_		cc:			(D1	Surger (free)					
Building Type		ıl ⊠Of	ffice		Uther	rs (Please	Specify)					
Heating Degree Day	1,499 (HDD	18)	Coo	oling Degree I	Day		248 (CDD24)					
Net Floor Area (m^2	53,777		Treat	ted floor area	(m ²)							
Number of storeys	30F		С	ompletion Dat	ate 2012, January							
Incremental Cost	□Passive appro	oaches ((9	6) □Acti	ive app	oroaches	(%)					
Allocation (%)	□Renewable e	nergy sy	ystem	(%)[Cont	rol syster	n (%)					
Source of	□Government	Subsidy	/ (%) □Pro	ject In	centive (%)					
Incremental Cost	□Self-fund (%)[Dor	nation/Industry	/ in-kir	nd suppor	rt (%)					
Key Technical Index	es											
	Energy C	onsump	otion 7	Fargets	Desi	gn Value	Average value for typical					
_	Annual Heatin	ng Dema	und (l	xWh/m ² a)								
Energy consumption	Annual Coolir	ng Dema	und (1	kWh/m²a)								
	Primary Energy	y Consu	mptio	on kWh/(m²)		338						
	Source to Site Co	onversio	on Fac	tor (Electricit								
	Primary Energy	Consul	mption	n Including:	Heatir	ng/Coolin	g 🗆 Lighting 🗖					
	Plug											
Energy saving appro	oaches (Yes for-	√)										
Passive	Skylight	Sola	r Tub	es Therm	al Zoni	ing Pa	assive Solar Heat Gain					
Approaches	Site	Na	atural	Ground	d Cooli	ing	Sun shading					

APEC 100 Best Practice	Analysis of Nearl	nalysis of Nearly/Net Zero Energy Building									
	Vegetation	Ventila	tion								
							\checkmark				
	Others				Low-e glas	SS					
	Energy Efficient Lighting	Advance Lighting Controls	g Eff	ficient liances	Load Manageme		echanical Air Heat Recovery				
Active Approaches	Displacement Ventilation	Radiant Heating		diant ooling	Air Sour Heat Pur		Hot Water Heat Recovery				
				E f	14 1-44						
	Other (Please Specify)	Direct Lat	d the cen ation air	n rol system tral heat source conditioning Visualization							
Asia-Pacific Economic Cooperation	APEC N Best Pract	Nearly (N ices Infor	,			0					
Basic Information						-					
Building Name	Zero Car Green Ho		Loc	ation (Ci	ty)		Goyang-si				
Building Type	Resident	tial □Of	fice 🗆	School	□Others	(Please S	pecify)				
Heating Degree Day	3000.3	3	Coolir	ng Degree	e Day		137.1				
Net Floor Area (m ²	1,273.1	.5	Treated	floor are	a (m ²)		2,235.09				
Number of storeys	8F/ B	F	Com	pletion D	Date		2012.11.01				
Incremental Cost	□ Passive a	pproaches	(70%)		Active appr	roaches (5%)				
Allocation (%)		le energy s	ystem (19 %)	Contr	ol systen	n (6 %)				
Source of	Governme	nt Subsidy	(77%) 🗆 Pr	oject Incer	tive (%)				
Incremental Cost	□Self-fund ((22 %)	Don	ation/Ind	ustry in-ki	nd suppor	rt (1%)				
Key Technical Index	Kes										
	Energy	Consump	tion Tar	gets	Desigr	n Value	Average value for typical				
Energy consumption	Annual Hea	ting Dema	nd (kW	/h/m ² a)	20	5.5	170				
	Annual Coo	ling Demai	nd (kW	/h/m ² a)		-	45				

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building										
	Primary Energy	y Consumptio	on kW	/h/(m²)	120		400			
	Source to Site C	Conversion Fa	actor	(Electrici	i 2.5					
	Primary Energy	Consumption	n Inc	luding:	Heating/Co	oling	<u>Lighting</u>			
Building energy codes or standards	Plug Building Energy Saving Criteria 2009									
Energy saving approaches (Yes for $$)										
	Skylight	Solar Tub	es	Therm	al Zoning Pass		ssive Solar Heat Gain			
Passive	-	-			0		0			
Approaches	Site Vegetation	Natural Ventilatio	n	Ground Cool		Sun shading				
	-	0		-		0				
	Energy Efficient Lighting	Advanced Lighting Controls		ficient liances	Load Manageme	nt	Mechanical Air Heat Recovery			
	0	0		0	-		0			
Active Approaches	Displacement	Radiant	Ra	diant	Air Sourc	ce	Hot Water Heat			
	Ventilation	Heating	Co	oling	Heat Pun	np	Recovery			
	-	0		-	-		-			
	Other			Stack h	eat recover	y sys	tem			

Asia-Pacific Economic Cooperation	APEC N Best Practice	learly	y (Net) Ze	ro Ener		0				
Basic Information	Dest I l'actice	5 1111		Concett	on remp	nate				
Building Name	Seoul Energy Dr Center	ream	Locati	on (City))		Seoul			
Building Type	□ Residential ■Office □ School ■Others (Please Specify)_exhibition									
Heating Degree Day	3000Cooling Degree Day137									
Net Floor Area (m ²	3762.32		Treated fl	oor area	(m ²)		3762.32			
Number of storeys	3F/ 1H	BF	Compl	etion Dat	e		2012			
Incremental Cost	□Passive approa	aches	(%)	□Acti	ve approa	ches (%)			
Allocation (%)	□Renewable en	ergy s	system (%) E	Control	system ((%)			
Source of Government Subsidy (%) Project Incentive (%)										
Incremental Cost	□Self-fund (10)0 %)) Donati	on/Indust	try in-kind	suppor	t (%)			
Key Technical Index	es									
	Energy Co	onsum	ption Targe	ets	Design	Value		value for ical		
	Annual Heating	g Dem	and (kWh/	m²a)	26.	0	7	0		
Energy consumption	Annual Cooling	g Dem	and (kWh/	m²a)	30.	5	9	0		
	Primary Energy		-		109	.7		20		
	ource to Site Con	versio	n Factor (El	ectricity)			2.5			
	Primary Energy	Consu	umption Incl	uding: <u>•I</u>	Heating/Co	ooling	■Lighting	■Plug		
Building energy codes or standards		В	building End	ergy Sav	ing Crite	ria 2009	1			
Energy saving appro	aches (Yes for√)								
	Skylight	Sol	ar Tubes	Therm	al Zoning	Pass	ive Solar H	leat Gain		
					\checkmark		\checkmark			
Passive Approaches	Site Vegetation		Vatural ntilation	Ground	l Cooling		Sun shad	ing		
					\checkmark		\checkmark			
	Others	Exter	ior Super	Insulatio	n, Triple	Loe-w	Glazing,	Daylight		

		control, Movable Exterior Blinds,								
	Energy Efficient Lighting	Advanced Lighting Controls	Efficient Appliances	Load Management	Mechanical Air Heat Recovery					
Active Approaches	~	~	√	~	\checkmark					
	Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery					
	\checkmark	\checkmark	\checkmark							

Asia-Pacific Economic Cooperation	APEC Near Best Practices In	•			0					
Basic Information										
Building Name	All Electric House	Locat	ion (City)		D	aejeon, Korea				
Building Type	■Residential □O	ffice	ol 🗆 Otl	hers (Pleas	se Spec	ify)				
Heating Degree Day	2768.3	Cooling	Degree D	ay		106.7				
Net Floor Area (m^2	156.7 m ²	Treated fl	oor area (m ²)		214 m ²				
Number of storeys	2F/ 0BF	Compl	etion Date	e		2010				
Incremental Cost	□Passive approach	□Passive approaches (%) □Active approaches (%)								
Allocation (%)	□Renewable energy system (%) □Control system (%)									
Source of	□Government Subsidy (%) □Project Incentive (%)									
Incremental Cost Self-fund (100 %) Donation/Industry in-kind support (%)										
Key Technical Index	es									
	Energy Consu	mption Targ	ets	Design V	alue	typical similar building				
E	Energy Consu Annual Heating De			Design V 42.2						
Energy consumption		emand (kWh/	/m²a)			building				
	Annual Heating De Annual Cooling De Primary Energy Co	emand (kWh/ emand (kWh/ nsumption kW	/m ² a) /m ² a) /h/(m ²)	42.2	, ,	building 135.0				
	Annual Heating De Annual Cooling De Primary Energy Co Source to Site C	emand (kWh/ emand (kWh/ nsumption kW Conversion Fac	/m ² a) /m ² a) /h/(m ²)	42.2	2	building 135.0 7.0				
	Annual Heating De Annual Cooling De Primary Energy Co Source to Site C	emand (kWh/ emand (kWh/ nsumption kW Conversion Fac tricity)	/m ² a) /m ² a) /h/(m ²) ctor	42.2 4.2 305.2	2	building 135.0 7.0 573.5				
	Annual Heating De Annual Cooling De Primary Energy Co Source to Site C (Elec Primary Energy Cons	emand (kWh/ emand (kWh/ nsumption kW Conversion Fac tricity)	/m ² a) /m ² a) /h/(m ²) ctor ding:□He	42.2 4.2 305.2	2 ing	building 135.0 7.0 573.5 2.5 Lighting Plug				
consumption Building energy	Annual Heating De Annual Cooling De Primary Energy Co Source to Site C (Elec Primary Energy Cons	emand (kWh/ emand (kWh/ nsumption kW Conversion Fac tricity) sumption Inclu	/m ² a) /m ² a) /h/(m ²) ctor ding:□He	42.2 4.2 305.2	2 ing	building 135.0 7.0 573.5 2.5 Lighting Plug				
consumption Building energy codes or standards	Annual Heating De Annual Cooling De Primary Energy Co Source to Site C (Elec Primary Energy Cons Paches (Yes for√)	emand (kWh/ emand (kWh/ nsumption kW Conversion Fac tricity) sumption Inclu	/m ² a) /m ² a) /h/(m ²) ctor ding:□He ng Design	42.2 4.2 305.2	2 ing I (2010	building 135.0 7.0 573.5 2.5 Lighting Plug				
consumption Building energy codes or standards	Annual Heating De Annual Cooling De Primary Energy Co Source to Site C (Elec Primary Energy Cons Paches (Yes for√)	emand (kWh/ emand (kWh/ nsumption kW Conversion Fac tricity) sumption Inclu Korea Buildin	/m ² a) /m ² a) /h/(m ²) ctor ding:□He ng Design	42.2 4.2 305.2 eating/Cool	2 ing I (2010	building 135.0 7.0 573.5 2.5]Lighting □Plug))				
consumption Building energy codes or standards	Annual Heating De Annual Cooling De Primary Energy Co Source to Site C (Elec Primary Energy Cons aches (Yes for√) Skylight S Site	emand (kWh/ emand (kWh/ nsumption kW Conversion Fac tricity) sumption Inclu Korea Buildin	/m ² a) /m ² a) /h/(m ²) ctor ding:□He ng Design Therma	42.2 4.2 305.2 eating/Cool Standard	2 ing I (2010	building 135.0 7.0 573.5 2.5]Lighting □Plug))				
consumption Building energy codes or standards Energy saving appro Passive	Annual Heating De Annual Cooling De Primary Energy Co Source to Site C (Elec Primary Energy Cons aches (Yes for√) Skylight S Site	emand (kWh/ emand (kWh/ nsumption kW Conversion Fac tricity) sumption Inclu Korea Buildin Golar Tubes	/m ² a) /m ² a) /h/(m ²) ctor ding:□He ng Design Therma	42.2 4.2 305.2 ating/Cool standard	2 ing I (2010	building 135.0 7.0 573.5 2.5 2.5 2.5 DLighting □Plug)) ive Solar Heat Gain √				

APEC 100 Best Practic	e Analysis of Near	ly/Net Z	ero En	ergy Building			Asia- Economic	Pacific Cooperation
	Specify)			Exterior B	lind, E	xterior Ir	nsulation	
	Energy Efficient Lighting	Adva Ligh Cont	ting	Efficient Appliances	Lo Manag		Mechanica Reco	al Air Heat overy
	\checkmark			~	~		-	/
Active Approaches	Displacement Ventilation	Radia Heatii		Radiant Cooling	Air Source Heat Pump			ter Heat overy
		√						
	Other		GSH	IP System for	Heati	ng, Cool	ing, and DI	łW
Asia-Pacific Economic Cooperation	APEC I Best Practice	•) Zero Ener ion Collecti	0.	U		
Basic Information								
Building Name	NIER		Ι	Location (City))		Inchor	l
Building Type	□Residenti	al ∎O	office		Others	(Please	Specify) <u>ex</u>	hibition
Heating Degree Day	2688		Coo	oling Degree I	Day		100	
Net Floor Area (m^2	1927.68		Treat	ted floor area	(m ²)		2449.24	
Number of storeys	2F/1B		C	ompletion Dat	te		2011.4	
Incremental Cost	■Pass	sive app	roache	es (%)	■Act	ive appro	oaches (%)
Allocation (%)	■Rene	wable e	energy	system (%) 🗆	Control	system (%)
Source of Incrementa	□Gov	vernmer	nt Subs	sidy (%)	□Pro	oject Inco	entive (%)
Cost	■Self-f	fund (1	00 %) Donation	/Industr	y in-kind	d support (%)
Key Technical Index	es							
	Energy C	onsum	ption '	Fargets	Desi	gn Value		e value for pical
	Annual Heatir	ng Dem	and (1	kWh/m ² a)				70
Energy	Annual Coolir	ng Dem	and (kWh/m ² a)				90
consumption	Primary Energ	<u> </u>						420
	Source to S	Site Con Electric		n Factor			2.5	
	Primary Energy	Consu	mptio	n Including:	Heating	/Cooling	g ■ Lightin	g ∎Plug

Building energy codes or standards	Building Energy Saving Criteria 2009							
Energy saving approaches (Yes for√)								
	Skylight	Sol	ar Tub	es	Therm	al Zoning	Pas	ssive Solar Heat Gain
Deseries	\checkmark		\checkmark			\checkmark		\checkmark
Passive Approaches	Site Vegetation		Natural Ventilation		Ground	l Cooling		Sun shading
			\checkmark			\checkmark		\checkmark
	Energy Efficient Lighting	Lighting		icient liances	Load Managen	nent	Mechanical Air Heat Recovery	
	\checkmark	√	,		\checkmark	√		
Active Approaches	Displacement Ventilation	Radia Heati			diant oling	Air Sou Heat Pu		Hot Water Heat Recovery
	Other (Please Specify)	Task	& amb	ient l	ighting			
APEC Asia-Pacific	APEC N Best Practice	•	-	-		gy Build	0	
Economic Cooperation Basic Information	Dest I lactice		Jina		concer	on remp	nate	
Building Name	Geoje Ok-sa Residential bui		I	locati	on (City))		Geoje
Building Type	Residentia	1 🗆 C	Office		chool [Others (Please	Specify)
Heating Degree Day	1908.1		Co	oling	Degree I	Day		107.6
Net Floor Area (m^2	93.39		Trea	ted flo	oor area	(m ²)	377	
Number of storeis		2F	C	ompl	etion Dat	te		2015.1.21
Incremental Cost	□Passive appro	oaches	(50%	%)	□Acti	ve approa	ches (15%)
Allocation (%)	□Renewable e	nergy s	system	(30)%) [Control	system	(5%)
Source of	□Government	Subsid	у(%)	DPro	ject Incen	tive (%)
Incremental Cost	□Self-fund (1	\Box Self-fund (100%) \Box Donation/Industry in-kind support (%)						rt (%)
Key Technical Index	es							
Energy	Energy C	onsum	ption '	Targe	ets	Design	Value	Average value for

APEC 100 Best Practice Analysis of	Nearly/Net Zero	Energy Building
------------------------------------	-----------------	-----------------

APEC 100 Best Practic	e Analysis of Nearl	y/Net Z	ero En	ergy H	Building			Asia-Pacific Economic Cooperation	
consumption								typical	
	Annual Heating Demand (kWh/m ² a)					24	-		
	Annual Cooling Demand (kWh/m ² a)					32	-		
	Primary Energy	y Cons	umptic	on kW	/(m²)	1	176	-	
	Source to S	ite Cor	iversio	n Fac	ctor				
		Electri		T 1	1.	TT (*	/0 1:		
	Primary Energy Plug	Const	imptio	n Inc.	uding:	Heating	g/Coolir	ng 🗆 Lighting 🗖	
Building energy codes or standards		В	uildin	g En	ergy Sav	ing Cri	teria 20	12	
Energy saving appro	oaches (Yes for	/)							
	Skylight	Sol	ar Tub	es	Therm	al Zonir	ng P	assive Solar Heat Gain	
Passive	~	Natural Ventilation			~		\checkmark		
Approaches	Site Vegetation			n	Ground	d Coolir	ıg	Sun shading	
			√			\checkmark		\checkmark	
	Energy Efficient Lighting	Adva Ligh Con	ting		ïcient liances	Loa Manag		Mechanical Air Heat Recovery	
Active Approaches	~			√				\checkmark	
	Displacement Ventilation	Radiant Heating			diant oling	Air Source Heat Pump		Hot Water Heat Recovery	
	~				√				
APEC Asia-Pacific Economic Cooperation	APEC N Best Practice								
Basic Information									
Building Name	Energy Town H	Jinchun Zero- Energy Town House Location ((100 Houses)			on (City	ty) Jinchun			
Building Type	Residentia	1 🗆	Office		chool [Others	s (Please	e Specify)	
Heating Degree Day	2768.3		Co	oling	Degree I	Day		106.7	
Net Floor Area (m ²	145.75 x 100 ı	units	Trea	ted fl	oor area	(m ²)	1:	53.25 x 100 Units	
Number of storeys	2F/	BF	C	omnl	etion Dat				

APEC 100 Best Practic	e Analysis of Nearl	ly/Net Zero En	ergy I	Building			APEC Asia-Pacific Economic Cooperation	
Incremental Cost	\square Passive approaches (60%) \square Active approaches (10%)							
Allocation (%)	□Renewable e	□Renewable energy system (30 %) □Control system (%)						
Source of	□Government	Subsidy (1	5%)) □Pro	oject Incent	ive (%)	
Incremental Cost	□Self-fund (85 %) □D	onati	on/Indus	try in-kind	suppoi	rt (%)	
Key Technical Index	es							
	Energy C	onsumption '	Targ	ets	Design V	alue	Average value for typical similar building	
Energy	Annual Heatin	ng Demand (kWh/	/m²a)	26		170	
consumption	Annual Coolin	ng Demand (kWh/	/m²a)	12		45	
		Primary Energy Consumption kWh/(m ²)			78		400	
		ite Conversio Electricity)	n Fa	ctor	2.5			
	Primary Energy	Consumption	Inclu	ding: 🗗	eating/Cool	ing [□Lighting □Plug	
Building energy codes or standards]	SO- 1	13790 / P	PHPP 2007			
Energy saving appro	oaches (Yes for	/)						
	Skylight	Solar Tub	es	Therm	al Zoning	Pass	sive Solar Heat Gain	
Passive	✓				✓		✓	
Approaches	Site	Natural		Ground	d Cooling		Sun shading	
	Vegetation	Ventilatio	n					
	Energy	Advanced					Mechanical Air Heat	
	Efficient	Lighting		ficient oliances	Load Manageme		Recovery	
Active Approaches	Lighting	Controls		✓			4	
	Displacement	Radiant	Ra	adiant	Air Source		Hot Water Heat	
	Ventilation	Heating	Co	ooling	Heat Pump		Recovery	
	~	\checkmark			 ✓ 			
APEC Asia-Pacific Economic Cooperation	APEC N Best Practice	Nearly (Net es Informat				-		
Basic Information								
Building Name	Odae Mt. Kore kyebangsan	ea National Pa Branch Office		Locatio	n (City)		Pyeongchang	

APEC 100 Best Practic	ce Analysis of Nearly/Net Zero Energy Building						Asia-Pacific Economic Cooperation		
Building Type □Residential ■Office □School □Others (Please Specify)									
Heating Degree Day	4016.4		C	oolin	g Degree	Day		1	
Net Floor Area (m^2	105.03		Treated floor area (m^2)			a (m ²)	654.2		
Number of stories		2F		Comj	pletion D	ate		2013.12.6	
Incremental Cost	□Passive appro	\Box Passive approaches (50%) \Box Active approaches (15%)							
Allocation (%)	□Renewable en	nergy s	ystem	(3	30%)	□Control	systen	n (5%)	
Source of	□Government	Subsid	у (%)	□Pro	ject Incent	ive (%)	
Incremental Cost	□Self-fund (100%) 🗆 🗆	onat	ion/Indus	try in-kind	l suppo	ort (%)	
Key Technical Index	es								
	Energy Co	Energy Consumption Targets				Design Value		Average value for typical similar building	
Enorgy	Annual Heatin	g Dem	and (1	⟨Wh/	m²a)	38.6		-	
Energy consumption	Annual Coolin	g Dem	and (1	kWh/	m²a)	3.6		-	
	Primary Energy	y Consi	umptio	n kW	/(m²)	-		-	
	Source to S	ite Cor Electrio		n Fac	ctor	2.5			
	Primary Energy	Consur	nption	Inclu	ding: H	eating/Coo	ling	Lighting DPlug	
Building energy codes or standards		B	uildin	g Ene	ergy Savi	ing Criter	ia 2012	2	
Energy saving appro	oaches (Yes forv	/)							
	Skylight	Sola	ar Tube	es	Thermal Zoning		Pas	sive Solar Heat Gain	
Passive	~					√	~		
Approaches	Site Vegetation		latural ntilatio	n	Ground	l Cooling	Sun shading		
			\checkmark			√		\checkmark	
Active Approaches	Energy Efficient Lighting	Adva Ligh Cont	ting		ïcient liances	Load Managem		Mechanical Air Heat Recovery	
	~				√			\checkmark	

	e Analysis of Nearl	ly/Net Z	ero Energy	Building			Asia-Pacific Economic Cooperation
	Displacement	Radia	int R	adiant	Air So	urce	Hot Water Heat
	Ventilation	Heati	ng C	ooling	Heat P	ump	Recovery
	1				~		
Asia-Pacific Economic Cooperation	APEC N Best Practice	•	v (Net) Zo ormation			0	
Basic Information	1						
Building Name	PHIKO No.	2	Loca	tion (City)		Namwon
Building Type		1 🗆 C	Office	School [Others	(Please S	Specify)
Heating Degree Day	2300		Cooling	g Degree I	Day		100
Net Floor Area (m^2)	99.16		Treated	floor area	(m ²)		99.16
Number of storeys	1F/	BF	Comp	oletion Da	te		2015.12
Incremental Cost	□Passive appro	baches	(52 %)		tive appro	oaches (15 %)
Allocation (%)	□Renewable energy system (33 %) □Control system (- %)						
	□Government Subsidy (20 %) □Project Incentive (%) □Self-fund (80 %) □Donation/Industry in-kind support (%)						
Source of Incremental Cost			•	·	,		
	□Self-fund (•	·	,		
Incremental Cost	□Self-fund (80 %)	Dona	tion/Indus	,	d suppo	rt (%)
Incremental Cost	□Self-fund (80 %) onsum	Donat	tion/Indus gets	try in-kin	d suppor	rt (%) Average value for
Incremental Cost Key Technical Index Energy	□Self-fund (es Energy C	80 %) onsum	Donat	tion/Indus gets n/m ² a)	try in-kin Design	d suppor	rt (%) Average value for typical
Incremental Cost	□Self-fund (es Energy Co Annual Heatin	80 %) onsum Ig Dem	Donat	tion/Indus gets 1/m ² a)	try in-kin Design 4	d suppor Value 4 3	rt (%) Average value for typical 170
Incremental Cost Key Technical Index Energy	□Self-fund (es Energy Co Annual Heatin Annual Coolin Primary Energy Source to S	80 %) onsum ag Dem ag Dem y Consu ite Cor	Donat ption Targ and (kWf and (kWf umption kV aversion Fa	tion/Indus gets n/m ² a) n/m ² a) Wh/(m ²)	try in-kin Design 4	d suppor Value 4 3	rt (%) Average value for typical 170 45
Incremental Cost Key Technical Index Energy	□Self-fund (es Energy Co Annual Heatin Annual Coolin Primary Energy Source to S	80 %) onsum g Dem g Dem y Consi ite Cor Electri	Donat ption Targ and (kWh and (kWh umption kv nversion Fa city)	tion/Indus gets n/m ² a) n/m ² a) Wh/(m ²) actor	try in-kin Design 4 17	d suppor Value 4 3 78	rt (%) Average value for typical 170 45 400
Incremental Cost Key Technical Index Energy consumption Building energy	□Self-fund (es Energy Co Annual Heatin Annual Coolin Primary Energy Source to S	80 %) onsum g Dem g Dem y Consi ite Cor Electri	Donat ption Targ and (kWP and (kWP and (kWP umption k ¹ nversion Fa city) nption Incl	tion/Indus gets n/m ² a) n/m ² a) Wh/(m ²) actor	try in-kin Design 4 17 eating/Co	d suppor Value 4 3 78 oling	rt (%) Average value for typical 170 45 400 2.5
Incremental Cost Key Technical Index Energy consumption	□Self-fund (es Energy Co Annual Heatin Annual Coolin Primary Energy Source to S (Primary Energy	80 %) onsum ag Dem y Consu ite Cor Electri Consur	Donat ption Targ and (kWP and (kWP and (kWP umption k ¹ nversion Fa city) nption Incl	tion/Indus gets n/m ² a) n/m ² a) Wh/(m ²) actor uding:	try in-kin Design 4 17 eating/Co	d suppor Value 4 3 78 oling	rt (%) Average value for typical 170 45 400 2.5
Incremental Cost Key Technical Index Energy consumption Building energy codes or standards	□Self-fund (es Energy Co Annual Heatin Annual Coolin Primary Energy Source to S (Primary Energy	80 %) onsum g Dem g Dem y Consu ite Cor Electri Consur	Donat ption Targ and (kWP and (kWP and (kWP umption k ¹ nversion Fa city) nption Incl	tion/Indus gets h/m ² a) h/m ² a) Wh/(m ²) actor uding: []/	try in-kin Design 4 17 eating/Co	d suppor	rt (%) Average value for typical 170 45 400 2.5
Incremental Cost Key Technical Index Energy consumption Building energy codes or standards	□Self-fund (es Energy Co Annual Heatin Annual Coolin Primary Energy Source to S () Primary Energy Baches (Yes for o	80 %) onsum g Dem g Dem y Consu ite Cor Electri Consur	Donat ption Targ and (kWf and (kWf umption kV umption Fa city) nption Incl ISC	tion/Indus gets h/m ² a) h/m ² a) Wh/(m ²) actor uding: []/	try in-kin Design 4 1 17 eating/Co PHPP 8.5	d suppor	rt (%) Average value for typical 170 45 400 2.5 Lighting □Plug

APEC 100 Best Practice Analysis of Nearly/Ne	et Zero Energy Building
--	-------------------------

							\checkmark
	Energy Efficient Lighting	Advanced Lighting Controls		ficient liances	Load Manageme	ent	Mechanical Air Heat Recovery
	\checkmark						
Active Approaches	Displacement	Radiant	Ra	diant	Air Sour	ce	Hot Water Heat
	Ventilation	Heating	Co	oling	Heat Pun	np	Recovery
	Other	Heat Exchange Ventilate System					System

APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template

Basic Information							
Building Name	On-Yang 6 dong Community Service Center	Location (City)	Asan				
Building Type	□Residential ■Office □School □Others (Please Specify)						
Heating Degree Day	2768.3	Cooling Degree Day	106.7				
Net Floor Area (m^2)	1464.5	Treated floor area (m^2	7021				
Number of storeis	2F/ 1BF	Completion Date	2014.6.10				
Incremental Cost	□Passive approaches (50 °	%) □Active approac	hes (15 %)				
Allocation (%)	□Renewable energy system (□Renewable energy system (30 %) □Control system (5 %)					
Source of	Government Subsidy (%) □Project Incentive	e (%)				
Incremental Cost	□Self-fund (100%) □Do	nation/Industry in-kind su	pport (%)				

Key Technical Indexes

	Energy Consumption Targets	Design Value	Average value for typical				
	Annual Heating Demand (kWh/m ² a)	22	70-				
Energy consumption	Annual Cooling Demand (kWh/m ² a)	16	-				
F	Primary Energy Consumption kWh/(m ²)	114	577.8				
	Source to Site Conversion Factor (Electricity) 2.5						
	Primary Energy Consumption Including: Heating/Cooling Lighting						
Building energy codes or standards	Building Energy Saving Criteria 2012						

Energy saving appro	oaches (Yes forv	/)						
	Skylight	Solar Tub	Solar Tubes		ermal Zoning	Pa	Passive Solar Heat Gain	
Passive	\checkmark	Natural Ventilation		~			\checkmark	
Approaches	Site Vegetation			Ground Cooling			Sun shading	
		~		\checkmark			\checkmark	
	Energy Efficient Lighting	Advanced Lighting Controls		ficient liances	Load Manageme	nt	Mechanical Air Heat Recovery	
Active Approaches	\checkmark			\checkmark			~	
	Displacement Ventilation	Radiant Heating		adiant ooling	Air Source Heat Pump		Hot Water Heat Recovery	
			~					

	APEC Nearly (Net) Zero Energy Building Economic Cooperation								
Asia-Pacific Economic Cooperation	Best Practices Information Collection Template								
Basic Information									
Building Name	SoyanSopeoglag PostOffice		Locati	Seongnam, S.I					
Building Type	□Residential ■Office □School □Others (Please Specify)								
Heating Degree Day	2688		Cooling	Degree I	Day		100		
Net Floor Area (m^2)	420.40		Treated flo	oor area ((m ²)		755.5		
Number of storeys	2	3F	Compl	etion Dat	te	2	010. 12. 18		
Incremental Cost	■Passive approa	aches	(42%)	□Activ	ve appro	oaches (%)		
Allocation (%)	Renewable en	■Renewable energy system (58%) □Control system (%)							
Source of	■Government S	ubsid	ly (100%)	□Pro	ject Inc	entive (%)		
Incremental Cost	□Self-fund (%) □Donation/Industry in-kind support (%)								
Key Technical Index	es								
	Energy Co	nsum	ption Targe	ets	Desig	gn Value	Average value for typical similar building		
	Annual Heating Demand (kWh/m²a)11.270								
	Annual Heating	, Dem	and (kWh/	m²a)	1	11.2			
Energy	Annual Cooling					11.2 27.3			
Energy consumption	Annual Cooling Primary Energy	g Dem Cons	and (kWh/	² m ² a) ⁷ h/(m ²)	2		70		
	Annual Cooling Primary Energy Source to Sit	g Dem Cons te Cor	aand (kWh/ umption kW nversion Fac	² m ² a) ⁷ h/(m ²)	2	27.3	70 90		
	Annual Cooling Primary Energy Source to Sit	g Dem Cons te Coi Electri	nand (kWh/ umption kW nversion Fac city)	m ² a) /h/(m ²) ctor		27.3 22.3	70 90 420		
	Annual Cooling Primary Energy Source to Sit (E Primary Energy 0	g Dem Cons te Con Electri Consu	nand (kWh/ umption kW nversion Fac city)	m ² a) /h/(m ²) etor	-: Heating	27.3 22.3 g/Cooling	70 90 420 2.5 ■Lighting □		
consumption Building energy	Annual Cooling Primary Energy Source to Sit (E Primary Energy (Plug	g Dem Cons te Con Electri Consu B i	aand (kWh/ umption kW nversion Fac city) umption Incl	m ² a) /h/(m ²) etor	-: Heating	27.3 22.3 g/Cooling	70 90 420 2.5 ■Lighting □		
consumption Building energy codes or standards	Annual Cooling Primary Energy Source to Sit (E Primary Energy (Plug	g Dem Cons te Con Electri Consu Bi	aand (kWh/ umption kW nversion Fac city) umption Incl	m ² a) /h/(m ²) ctor uuding:	-: Heating	27.3 22.3 g/Cooling teria 2009	70 90 420 2.5 ■Lighting □		
consumption Building energy codes or standards	Annual Cooling Primary Energy Source to Sit (E Primary Energy 0 Plug Paches (Yes for√	g Dem Cons te Con Electri Consu Bi	aand (kWh/ umption kW nversion Fac city) umption Incl uilding Ene	m ² a) /h/(m ²) ctor uuding:	- - Heating	27.3 22.3 g/Cooling teria 2009	70 90 420 2.5 ■Lighting □		

APEC 100 Best Practic	Practice Analysis of Nearly/Net Zero Energy Building								
		\checkmark				\checkmark			
	Energy Efficient Lighting	Advanced Lighting Controls		Efficient Appliances		Load Managem		Mechanical Air Heat Recovery	
Active Approaches	\checkmark	\checkmark			\checkmark	√		\checkmark	
	Displacement Ventilation	Radiant Heating		Radiant Cooling		Air Source Heat Pump		Hot Water Heat Recovery	
	\checkmark								
Asia-Pacific Economic Cooperation	APEC I Best Practice	•		·		gy Build ion Temp	0		
Basic Information						-			
Building Name	Bullitt Cent	er		Loca	ation (Cit	ty)		Seattle	
Building Type	□Residential □ √ Office □ School				School	\Box Others (Please	Specify)	
Heating Degree Day	4,036 Cooling Degree				Day		474		
Net Floor Area (m^2)	4,800 Treated floor area				(m ²)		3600		
Number of storeys	6F/ BF Completion D					ate	e 2012		
3Incremental Cost	□Passive appro	oaches	(9	%)	□Act	tive approaches (%)			
Allocation (%)	□Renewable e	nergy s	system	(%)[Control system (%)			
Source of	□Government Subsidy (%) □Project Incentive (%)								
Incremental Cost	□ √ Self-fund	(%) 🗆 [Donat	ion/Indus	stry in-kind	suppo	ort (%)	
Key Technical Index	es								
	Energy C	onsum	ption '	Targ	ets	Design Value		Average value for typical	
	Annual Heatin	Annual Heating Demand (kWh/m ² a)					1	75.71	
Energy consumption	Annual Cooling Demand (kWh/m ² a)					1.56			
consumption	Primary Energy	-			169.8	84	764.29		
	Source to S	ite Coi Electri		on Fac	ctor	0.297			
	Primary Energy Consumption Including: Heating/Cooling Lighting Plug						□Lighting □		
Building energy	Seattle, heating, cooling, lighting, plug and misc								

Г

codes or standards									
Energy saving approaches (Yes for√)									
	Skylight Solar Tubes Thermal Zoning		Pa	assive Solar Heat Gain					
Passive Approaches	Ground Cooling		d Cooling	Sun shading					
				\checkmark					
	Energy Efficient Lighting	Advanced Lighting Controls		ficient liances	Load Manageme	ent	Mechanical Air Heat Recovery		
	\checkmark	\checkmark		\checkmark	\checkmark				
Active Approaches	Displacement	Radiant	Ra	diant	Air Sourd	ce	Hot Water Heat		
	Ventilation	Heating	Cooling		Heat Pump		Recovery		
	\checkmark	\checkmark		\checkmark			\checkmark		
	Other		ımp						

APEC Asia-Pacific Economic Cooperation	APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template								
Basic Information	-		_						
Building Name	Chrisney Lib	rary	Locati	ion (City))	Chrisney			
Building Type	$\Box Residential \ \Box Office \ \Box School \ \Box \checkmark Others (Please Specify) Library$								
Heating Degree Day	5179		Cooling Degree Day 1458						
Net Floor Area (m^2)	223		Treated fl	oor area	(m ²)		221		
Number of storeys	1F/	BF	Compl	etion Dat	te		April 2009		
3Incremental Cost	□Passive appro	oaches	(%)	□Acti	ve app	roaches (%)		
Allocation (%)	□Renewable energy system (%) □Control system (%)								
Source of	□ √ Governme	nt Sub	sidy (%)	DPro	ject Inc	entive (%)		
Incremental Cost	□Self-fund (%)	□ √ Dona	ution/Indu	ıstry in	-kind supp	ort (%)		
Key Technical Index	es								
	Energy Co	onsum	ption Targe	ets	Design Value		Average value for typical		
	Annual Heatin	g Den	and (kWh/	m²a)					
Energy	Annual Coolin	g Den	nand (kWh/	′m²a)					
consumption	Primary Energy	/ Cons	umption kW	/h/(m²)	1′	77.27	2610.75		
		ite Co Electri	nversion Fac	ctor		().297		
	Primary Energy Plug			luding:	Heatin	g/Cooling	□Lighting □		
Building energy codes or standards			Haw	aii, lighti	ing, plu	ıg			
Energy saving appro	aches (Yes forv	()							
	Skylight	Sol	ar Tubes	Therma	al Zoni	ng Pass	vive Solar Heat Gain		
	\checkmark		\checkmark				\checkmark		
Passive Approaches	Site Vegetation		Natural ntilation	Ground (ng	Sun shading		
			\checkmark		\checkmark	\checkmark			

A T Б р

APEC 100 Best Practic	tice Analysis of Nearly/Net Zero Energy Building								
	Energy Efficient Lighting	Advanced Lighting Controls		Efficient Appliances	Load Management	Mechanical Air Heat Recovery			
	\checkmark	\checkmark							
Active Approaches	Displacement Ventilation	Radiant Heating		Radiant Cooling	Air Source Heat Pump	Hot Water Heat Recovery			
					\checkmark				
	Others			ground	l source heat pu	mp			
APEC	APEC N	Vearly	(Net) Zero Ener	gy Building				
Asia-Pacific Economic Cooperation	Best Practice	es Info	rmat	ion Collecti	on Template				
Basic Information	1								
Building Name	Environmental Center Sono State		Ι	Location (City)	7) Rohnert Park				
Building Type		□Off	ice [□School □	√ Others (Pleas	e Specify) Laboratory			
Heating Degree Day	2802		Coo	oling Degree I	Day 602				
Net Floor Area (m^2)	204		Treat	ted floor area	(m ²) 204				
Number of storeys	1F/	BF	C	ompletion Dat	te July 2001				
3Incremental Cost	□Passive appro	oaches ((%	%) □Acti	tive approaches (%)				
Allocation (%)	□Renewable e	nergy sy	ystem	(%)[□Control system (%)				
Source of	$\Box \checkmark$ Government Subsidy (100 %) \Box Project Incentive (%)								
Incremental Cost	□Self-fund (%)	DD	onation/Indust	ry in-kind suppo	ort (%)			
Key Technical Index	es								
	Energy C	onsumj	ption '	Targets	Design Value	Average value for typical			
	Annual Heatin	ig Dema	and (]	kWh/m²a)					
Energy consumption	Annual Coolir	ig Dema	and (1	kWh/m²a)					
consumption	Primary Energy	·	-		24.63 123.14				
	Source to S		0.297						
	Primary Energy Consumption Including:								
Building energy	California, heating, cooling, lighting, plug								

codes or standards									
Energy saving approaches (Yes for√)									
	Skylight	Solar Tub	es	Therm	al Zoning	Passive Solar Heat Gain			
Dogoing	\checkmark					\checkmark			
Passive Approaches	Site Natural		d Cooling	Sun shading					
						\checkmark			
	Energy Efficient Lighting	Advanced Lighting Controls	g Efficien		Load Manageme	Mechanical Air Heat Recovery			
Active Approaches	\checkmark	\checkmark							
	Displacement Ventilation	Radiant Heating		diant oling	Air Sourd Heat Pum				
		\checkmark							

AFEC TOU DESI FRACUC	APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template								
Basic Information					-				
Building Name	Hawaii Gatew Energy Cente		Locatio	on (City)		Kailua-Kona			
Building Type	□ Residential □ Office □ School □ √ Others (Please Specify) Assembly, Commercial office, Interpretive Center								
Heating Degree Day	18	Cooling Degree D			ay	2033			
Net Floor Area		r	Freated	floor are	a				
(m ²)	334		(1	m ²)		334			
Number of storeys	1F/ 1	BF	Comple	tion Dat	e	Jan 2005			
3Incremental Cost	□Passive appro	aches (%)	□Acti	ve approa	ches (%)			
Allocation (%)	□Renewable en	nergy syster	n (%) 🗆	Control s	ystem (%)			
Source of	$\Box \checkmark$ Government Subsidy (100 %) \Box Project Incentive (%)								
Incremental Cost	□Self-fund (%) □Donation/Industry in-kind support (%)								
Key Technical Index	es								
	Energy Co	onsumptior	n Targe	ts		Design Value			
	Annual Heating	g Demand ((kWh/r	n²a)					
Energy	Annual Cooling	Annual Cooling Demand (kWh/m ² a)							
consumption	Primary Energy Consumption kWh/(m ²) 294.04								
consumption	Primary Energy	Consumpt	ion kW			294.04			
consumption	Source to Si			h/(m²)		294.04 0.297			
consumption	Source to Si	ite Convers Electricity)	ion Fact	h/(m ²) tor	Heating/C	0.297			
Building energy codes or standards	Source to Si (I Primary Energy	ite Convers Electricity)	ion Fact	h/(m²) tor uding:	Heating/C ng, plug	0.297			
Building energy	Source to Si (I Primary Energy Plug	ite Convers Electricity) Consumpti	ion Fact	h/(m²) tor uding:		0.297			
Building energy codes or standards	Source to Si (I Primary Energy Plug	ite Convers Electricity) Consumpti	ion Fact on Inclu Hawa	h/(m²) tor ⊔ding:□		0.297			
Building energy codes or standards	Source to Si (I Primary Energy Plug Daches (Yes for√	ite Convers Electricity) Consumpti	ion Fact on Inclu Hawa	h/(m²) tor ⊔ding:□	ng, plug	0.297			
Building energy codes or standards Energy saving appro Passive	Source to Si (I Primary Energy Plug Daches (Yes for√ Skylight Site	ite Convers Electricity) Consumpti	ion Fact on Inclu Hawa bes	h/(m ²) tor uding:	ng, plug Il Zoning	0.297			
Building energy codes or standards Energy saving appro	Source to Si (I Primary Energy Plug Daches (Yes for√ Skylight	ite Convers Electricity) Consumpti	ion Fact on Inclu Hawa bes	h/(m ²) tor uding:	ng, plug	0.297			
Building energy codes or standards Energy saving appro Passive	Source to Si (I Primary Energy Plug Daches (Yes for√ Skylight Site	ite Convers Electricity) Consumpti	ion Fact on Inclu Hawa bes	h/(m ²) tor uding: iii, lighti Therma Ground	ng, plug Il Zoning	0.297			

AT LO TOO DEST HACTOC Analysis of Hearly/Het Zero Energy Dunung Ecolomic Cooperation									
	Efficient	Lighting	Appliances	Management	Recovery				
	Lighting	Controls							
	\checkmark	\checkmark							
	D' 1 (A' 0					
	Displacement	Radiant	Radiant	Air Source	Hot Water Heat				
	Ventilation	Heating	Cooling	Heat Pump	Recovery				
			\checkmark						
	Other (Please	Thermal Chimney							
	Specify)								
APEC	APEC N	Nearly (Net) Zero Ener	gy Building					

APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template

Basic Information

Asia

Dasic mormation									
Building Name	Leslie Shao-Ming Sun Field Station	Location (City)	San Mateo County						
Building Type		$\Box Office \Box \checkmark School [$	□Others (Please Specify)						
Heating Degree Day	948	Cooling Degree Day	1172						
Net Floor Area (m^2)	1230	Treated floor area (m^2)	910						
Number of storeys	1 F/ BF	Completion Date	June 2002						
3Incremental Cost	□Passive approaches	□Passive approaches (%) □Active approaches (%)							
Allocation (%)	□Renewable energy s	system (%) □Cont	rol system (%)						
Source of	□Government Subsid	y (%) □Project Inc	entive (%)						
Incremental Cost	$\Box \checkmark$ Self-fund (%) $\Box \checkmark$ Donation/Industry	in-kind support (%)						

Key Technical Indexes

	Energy Consumption Targets	Design Value	Average value for typical			
	Annual Heating Demand (kWh/m ² a)					
Energy	Annual Cooling Demand (kWh/m ² a)					
consumption	Primary Energy Consumption kWh/(m ²)	101.38				
	Source to Site Conversion Factor (Electricity)	or 0.297				
	Primary Energy Consumption Including: Heating/Cooling Lighting Plug					
Building energy	California, heating, coolin	g, lighting, plug				

APEC 100 Best Practic	APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building							Asia-Pacific Economic Cooperation
codes or standards	codes or standards							
Energy saving approaches (Yes for $$)								
	Skylight	Sol	ar Tub	es	Thermal 2	Zoning	g Passive Solar Heat Gain	
Passive	\checkmark							
Approaches	Site Vegetation	Natural Ventilation		Ground Cooling		g Sun shading		
			\checkmark					\checkmark
	Energy Efficient		nced nting		fficient	Loa		Mechanical Air Heat Recovery
	Lighting	-	trols	Ap	pliances	Manage	ment	,
Active Approaches	\checkmark	V	1					
	Displacement Ventilation	Radia Heati			Radiant Cooling	Air Source Heat Pump		Hot Water Heat Recovery
	ventilution	licuti	115		Jooning			
	APEC	Vearly	v (Net) Zei	ro Energy	Buildi	ng	
Asia-Pacific Economic Cooperation	Best Practice	•					0	
Basic Information								
Building Name	Oberlin Colle Lewis Cente	-	I	Locati	ion (City)			Oberlin
Building Type		ential	□Offi	ice	$\Box \checkmark School$	l 🗆 Otł	ners (Pl	ease Specify)
Heating Degree Day	6500		Coo	oling	Degree Day	7		500
Net Floor Area (m^2)	1263		Treat	ted fl	oor area (m	n ²)		
Number of storeys	2F/	BF	C	ompl	etion Date			Jan 2000
Incremental Cost	□Passive appro	paches	(%	%)	□Active	approac	hes (%)
Allocation (%)	□Renewable e	nergy s	system	(%) □C	control sy	/stem (%)
Source of	□Government	Subsid	ly (%)	□Projec	t Incenti	ve (%)
Incremental Cost	$\Box \checkmark Self-fund$	(%	5) 🗆	Dona	tion/Industr	y in-kin	d suppo	ort (%)
Key Technical Index	es							
Energy	Energy	Consu	mptior	n Tar	gets	Desi Val	0	Average value for typical

III De 100 Dest I lactie	Analysis of Itearly/Iter Zero Energy Dunuing Economic Cooperation							
consumption	Annual Heating Demand (kWh/m ² a)	42.59	61.83					
	Annual Cooling Demand (kWh/m ² a)	7.26	32.49					
	Primary Energy Consumption kWh/(m ²)	349.66	543.22					
	Source to Site Conversion Factor (Electricity)		0.297					
	Primary Energy Consumption Including:	ating/Cooling	□Lighting □					
	Plug							
Building energy								
codes or standards	Ohio, lighting,	piug						

Energy saving approaches (Yes for \checkmark)

	Skylight	Solar Tubes	Thermal 2	Zoning	Passive Solar Heat Gain			
Passive	\checkmark				\checkmark			
Approaches	Site Vegetation	Natural Ventilation	Ground Cooling		ooling Sun shading			
\checkmark		\checkmark				\checkmark		
	Energy Efficient Lighting	Advanced Lighting Controls	Efficient Load Appliances Managem			Mechanical Air Heat Recovery		
	\checkmark	\checkmark						
Active Approaches	Displacement Ventilation	Radiant Heating	Radiant Cooling	Air Source Heat Pump		Hot Water Heat Recovery		
		\checkmark	\checkmark					
	Others		Geothermal heat pumps					

APEC Asia-Pacific Economic Cooperation	APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template								
Basic Information									
Building Name	Omega Center f Sustainable Livi		Location (City)		Rhinebeck			
Building Type	□Residential	$\square Residential \square Office \square School \square \checkmark Others Interpretive Center, Laboratory$							
Heating Degree Day	6008		Cooling Degr	ee Day		1176			
Net Floor Area (m^2	576	Т	reated floor a	rea (m ²)		576			
Number of storeys	1F/ E	3F	Completion	Date		May 2009			
3Incremental Cost	□Passive approa	aches (%) 🗆	Active app	oroaches (%)			
Allocation (%)	□Renewable en	ergy syst	em (%)	□Cont	rol system	(%)			
Source of	□Government S	Subsidy (%) 🗆	Project In	centive (%)			
Incremental Cost	□ √ Self-fund (40 %)	□ √ Donatio	n/Industry	in-kind su	pport (60 %)			
Key Technical Index	es								
	Energy Co	nsumpti	on Targets	Desi	ign Value	Average value for typical			
	Annual Heating	g Demand	d (kWh/m ² a	9.72					
Energy consumption	Annual Cooling	Domond	1 / 1-33/1- /?-						
consumption			a (kwn/m²a)	10.63				
consumption	Primary Energy		•	, 	10.63	343.41			
consumption		Consum	ption kWh/(m	²) 2	213.89	343.41 0.299			
	Primary Energy	Consum version F	ption kWh/(n	²) 2 city)	213.89				
Building energy codes or standards	Primary Energy ource to Site Conv Primary Energy C	Consum version F Consumpt	ption kWh/(n	1 ²) 2 city) □Heating/	213.89 Cooling [0.299			
Building energy	Primary Energy ource to Site Conv Primary Energy C Ne	Consump version F Consumpt ww York,	ption kWh/(n Factor (Electric ion Including:	1 ²) 2 city) □Heating/	213.89 Cooling [0.299			
Building energy codes or standards	Primary Energy ource to Site Conv Primary Energy C Ne	Consump version F Consumpt ww York,	ption kWh/(m Factor (Electric ion Including: heating, cool	1 ²) 2 city) □Heating/	Cooling [0.299			
Building energy codes or standards Energy saving appro	Primary Energy ource to Site Conv Primary Energy C Ne paches (Yes for√	Consump version F Consumpt w York,	ption kWh/(m Factor (Electric ion Including: heating, cool	²) 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cooling [0.299 □Lighting □Plug nd misc			
Building energy codes or standards	Primary Energy ource to Site Conv Primary Energy C Ne paches (Yes for-/ Skylight	Consump version F Consumpt w York,	ption kWh/(m Factor (Electric ion Including: heating, cool Fubes Th	²) 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cooling [ng, plug an ing Pas	0.299 Lighting □Plug nd misc sive Solar Heat Gain			
Building energy codes or standards Energy saving appro Passive	Primary Energy ource to Site Conv Primary Energy C Ne Daches (Yes for√ Skylight √ Site	Consumpt version F Consumpt w York,) Solar T Solar T	ption kWh/(m Factor (Electric ion Including: heating, cool Fubes Th Iral Grand	¹²) 2 city] □Heating/ ing, lighti ermal Zon	Cooling [ng, plug an ing Pas	0.299 □Lighting □Plug nd misc sive Solar Heat Gain			

APEC 100 Best Practic	ce Analysis of Nearly/Net Zero Energy Building						Asia-Pacific Economic Cooperation	
	Efficient	Ligh	nting	Appliances	Management		Recovery	
	Lighting	Con	trols					
	\checkmark							
	V	v						
Active Approaches	Displacement	Radiant		Radiant		Source	Hot Water Heat	
	Ventilation	Heati	ng	Cooling	Hea	t Pump	Recovery	
		\checkmark		\checkmark				
	Other		Grou	ud source hea	t pum	p, Geothe	rmal heat pumps	
	APEC N	Vearly	v (Net) Zero Ener	gy Bu	ilding		
Asia-Pacific Economic Cooperation	Best Practice	es Info	ormat	ion Collecti	on Te	mplate		
Basic Information								
	The Putney Scho	ool						
Building Name	Net Zero Energy		I	Location (City))		Putney	
	Field House							
Building Type	□Reside	ential	□Off	ice □ √ Sch	ool[□Others ((Please Specify)	
Heating Degree Day	5698		Coo	oling Degree I	Day		1106	
Net Floor Area (m^2	1560	1560 Treated floor area			(m ²)	m ²) 1560		
Number of storeys	1F/	1F/ BF Completion Da					October 2009	
3Incremental Cost	□Passive appro	paches	(9	%) □Acti	ve app	proaches ((%)	
Allocation (%)	□Renewable e	nergy s	system	(%)[□Cont	rol systen	n (%)	
Source of	□Government	Subsid	ly (%) 🗆 Proje	ect Inc	entive (%)	
Incremental Cost	□Self-fund (%)	□√	Donation/Indu	ıstry ir	n-kind sup	oport (%)	
Key Technical Index	es							
	Energy Co	onsum	ption '	Targets	Des	ign Value	Average value for typical	
	Annual Heatin	g Dem	and (1	kWh/m²a)		15.16	75.8	
Energy	Annual Coolin	g Dem	and (kWh/m²a)				
consumption	Primary Energy	y Cons	umptic	on kWh/(m²)	102.43 602.15			
	Source to S	ite Coi Electri		on Factor	0.297			
	Primary Energy	Consu	nption	Including:	eating/	Cooling	□Lighting □Plug	
Building energy			Vern	ıont, heating,	lighti	ng, plug		

codes or standards	e Analysis of Near	<u></u>	<u></u>					
Energy saving approaches (Yes for√)								
	Skylight Solar Tub		bes	Thermal Zoning		Pas	sive Solar Heat Gain	
Passive	\checkmark						\checkmark	
Approaches	Site Vegetation		Natural Ventilation		d Cooling		Sun shading	
	\checkmark	\checkmark					\checkmark	
	Energy Efficient	Advanced Lighting Controls		icient liances	Load Manageme		Mechanical Air Heat Recovery	
Active Approaches	Lighting √	√						
	Displacement	Radiant	Ra	diant	Air Sour	ce	Hot Water Heat	
	Ventilation	Heating	Co	oling	Heat Pump		Recovery	
					\checkmark			
		Nearly (Ne				-		
Asia-Pacific Economic Cooperation Basic Information	Best Practice	es Informa	tion	Collecti	on Templ	ate		
basic information	Science Hous	se at the						
Building Name	Science Mus Minneso	eum of	I	ocation ((City)		St. Paul	
Building Type	□Resident	ial □Offic	e 🗆	School	□ √ Other	s _In	terpretive Center_	
Heating Degree Day	5601		Coo	oling Deg	gree Day		1289	
Net Floor Area (m^2	142		Treat	ed floor a	area (m ²)		137	
Number of storeys	1F	7/ BF	С	ompletio	n Date		June 2003	
3Incremental Cost	□Passive appro	oaches (%)	□Act	ive approact	hes (%)	
Allocation (%)	□Renewable e	nergy system	n (%) [□Control sy	/stem	(%)	
Source of	□ √ Governme	nt Subsidy (%) □F	Project Incer	ntive	(%)	
Incremental Cost	□Self-fund (%) 🗆 <	/ Dona	ation/Indu	ustry in-kino	d supp	port (%)	
Key Technical Index	es							
Energy consumption	Energy C	onsumption	Targ	ets	Design V	alue	Average value for typical	

AT BC 100 Dest Hactice Analysis of Iterry/Iter Zero Energy Bunding					
	Annual Heating Demand (kWh/m ² a)	23.77	59.43		
	Annual Cooling Demand (kWh/m ² a)	2.05	5.13		
	Primary Energy Consumption kWh/(m ²)	186.83	467.08		
	Source to Site Conversion Factor (Electrici	<u> </u>			
	Primary Energy Consumption Including:				
	Plug				
Building energy	Minnerste besting liebting glug				
codes or standards	Minnesota, heating, lighting, plug				

Energy saving approaches (Yes for \checkmark)

	Skylight	Solar Tub	es	Therm	al Zoning	Pa	assive Solar Heat Gain
							\checkmark
Passive Approaches	Site Vegetation	Natural (Ventilation		Ground Cooling			Sun shading
		\checkmark					\checkmark
Active Approaches	Energy Efficient Lighting	Advanced Lighting Controls		Efficient I Appliances Man		ent	Mechanical Air Heat Recovery
	\checkmark	\checkmark					
	Displacement Ventilation	Radiant Heating	Radiant Cooling		Air Sourd Heat Pun		Hot Water Heat Recovery
		Treating		Johng		-Υ -	
	Other	ground source heat pump				ımp	

	APEC Nearly (Net) Zero Energy Building APEC Nearly (Net) Zero Energy Building Best Practices Information Collection Template						
Economic Cooperation	Dest I lactice						
Basic Information							
Building Name	Woods Hol Research Cer		Location (City)		Falmouth	
Building Type	□Residential		School	$\Box \checkmark Other$	rs (Please S	pecify) Laboratory	
Heating Degree Day	4598	Cooling Degree Da				1178	
Net Floor Area (m^2)	1784	Trea	ted floor a	rea (m ²)		1784	
Number of storeys	3 F/	BF C	Completion	Date		June 2003	
3Incremental Cost	□Passive approaches (%) □Active approaches (%)						
Allocation (%)	□Renewable energy system (%) □Control system (%)						
Source of	□Government Subsidy (%) □Project Incentive (%)						
Incremental Cost	$\Box \checkmark$ Self-fund (%) \Box Donation/Industry in-kind support (%)						
Key Technical Index	es						
	Energy Consumption Targets			Des	ign Value	Average value for typical	
	Annual Heating Demand (kWh/m ² a))			
Energy consumption	Annual Cooling Demand (kWh/m ² a))			
	Primary Energy Consumption kWh/(m ²)			l ²)	169.84 679.37		
	Source to Site Conversion Factor (Electricity)					0.297	
	Primary Energy	Consumption	Including:	Heating	/Cooling	□Lighting □Plug	
Building energy codes or standards	Massachusetts, heating, cooling, lighting, plug						
Energy saving approaches (Yes for√)							
	Skylight	Solar Tub	es Th	ermal Zon	ing Pas	ssive Solar Heat Gain	
Derit	\checkmark					\checkmark	
Passive Approaches	Site	Natural	Gr	Ground Cooli		Sun shading	
Approaches	Vegetation	Ventilatio	on			0	
Approaches	Vegetation	Ventilatio √	on			√	

Efficient	Lighting	Appliances	Management	Recovery
Lighting	Controls			
\checkmark	\checkmark	\checkmark		
Displacement	Radiant	Radiant	Air Source	Hot Water Heat
Ventilation	Heating	Cooling	Heat Pump	Recovery
Other	Ground Source Heat Pump			

Appendix IV

Meeting notes of 1st workshop

(Montreal, Canada)

APEC-CZEBS- iiSBE Net Zero Built Environment Symposium

Smart Net Zero Resilient Buildings and Communities

APEC-CZEBS- iiSBE Net Zero Built Environment Symposium

NZEB best practices analysis report of the 1st workshop

20-21 August, 2015

Centre for Zero Energy Building Studies Centre d'études sur le bâtiment à consommation nulle d'énergie

APEC-CZEBS- iiSBE Net Zero Built Environment Symposium

Content

Smart Net Zero Resilient Buildings and Communities	179
APEC-CZEBS- iiSBE Net Zero Built Environment Symposium	179
Overview	
Background	
Highlight	
Symposium Program	
Key Points from Presentations	
Panel 0: Introduction	
0-1 Moving the Mainstream towards Net-Zero Buildings	
0-2 Road to Zero—Why? When? What? How?	193
0-3 Towards Smart Net-zero Energy Buildings and Communities: Challenges and	
Opportunities	195
0-4 A systems model for small urban zones that may bring us closer to nearly-zero	196
Panel 1: NZEB and Low Energy Building Case Studies and Practices	198
1-1 Design and Operation of CABR Nearly Zero Energy Building	198
1-2 Examining Initial Steps & Barriers to Net Zero in the State of Oklahoma	198
1-3 NET ZERO ENERGY SCHOOLS: The starting block for the Canadian energy	
neutral K-12 schools	199
1-4 Design, construction, operation & monitoring of Zero Carbon Green Home	200
1-5 Leading the Way to Net Zero: -Best Practice of Asia's first retrofitted zero energy	
building	200
Panel 2: NZEB and Low Energy Building Design Practices	202
2-1 Best Practice for NZEB - Seoul Energy Dream Center of Korea	202
2-2 nZEB Oriented Best Practices in Japan	202
2-3 Best Practice of Green Building Development in Sub-tropic Climate in China	204
2-4 The Solarwind Pilot Building in Operation as Driver for Research	205
2-5 Affordable Net Zero Housing Communities in Canada: The Owens Corning Canada	
National Net Zero Project	205
Panel 3: Policies, Standards and Incentive Measures for Net-Zero Energy Buildings	s and
Communities	207
3-1 Overview of NZEB in Japan - Discussion on Definition and Evaluation Method of	
NZEB in SHASE of Japan	207
3-2 Where to Draw Socio-Technical System Boundaries of Zero Carbon Buildings and	
Communities?	208

3-3 The Acceleration of Net Zero: How the Canadian Home Builders' Association is

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building	Asia-Pacific Economic Cooperation
Supporting Industry Innovation	
3-4 Research on Performance Criteria of Nearly-Zero Energy Buildings in China	
Panel 4: Education for Net-Zero Energy: Challenges for Architecture and Engineer	ing Programs
4-1 Educational Needs for Architects & Engineers to Consistently Create Smart Net-	Zero
Resilient Projects	
4-2 When Environmental Evaluation meets Architecture Critique	
4-3 The Architecture Design Studio and High-Performance Building: Challenges	and
Reflections	212
Panel 5: Design of Net-Zero Resilient Communities	
5-1 Context for Net-zero Resilient Communities	
5-2 Towards resilient cities: Canadian initiatives	
5-3 Net-Zero Resilient Communities: Three Canadian Case-Studies	
Panel 6: Building Integrated Solar as an Enabling Technology for Net-Zero Energy a	
6-1 Building Integrated Solar Thermal Systems: Technology Appraisal	
6-2 Building Integrated PV-thermal collectors and systems	
6-3 Assessment of Roof Capacity for Active Solar Energy Generation in Hou	•
Developments	
6-4 BIPV/T + ASHP: Technologies for Near and Net-Zero Energy Buildings	
6-5 Modelling PCM, BIPV/T and other innovative technologies for energy efficient	•
buildings: a case study	
Panel 7: Energy Efficiency Technologies and their Integration with Renewables	
7-1 Design of resilient and robust high-rise residential buildings	
7-2 The development of mPCM enhanced tile for high performance buildings	
7-3 High performance building envelopes for Smart net-zero resilient buildings	
7-4 Wind Energy Potential of Urban Areas	
7-5 Performance analysis of GSHP system in CABR nearly zero energy buildings (N	NZEB) 221
Panel 8: Optimizing Building Operation, Storage and Grid Interaction	
8-1 Heat Pump Water Heating Control Strategy Optimization for Cold Climates	
8-2 Energy storage will enable net-zero energy buildings to become mainstream	
8-3 Modelling and Design of Natural and Hybrid Ventilation Systems for I	High
Performance Buildings	
8-4 Advanced Control of Heat Pumps and the Impact on Building/Grid Interactions	
Conclusion	

Overview

This Symposium is consisted of two workshops (Aug. 20 and 21), with nearly 70 speakers and delegates from 16 countries, as well as 40 graduate students from Centre for Zero Energy Building Studies (CZEBS), Smart Net-zero Energy Buildings strategic Research Network (SNEBRN), International Initiative for a Sustainable Built Environment (iiSBE) and Asia-Pacific Economic Cooperation (APEC) participated through presentations and discussions on the latest progress on NZEB Best Practices, as well as enabling technologies. The workshop of August 20, focused on case studies, policy issues and an education session and included nearly 20 delegates funded by APEC. The workshop on August 21 focused mainly on enabling technologies for net-zero buildings and communities with participation of about 15 SNEBRN researchers, iiSBE and APEC delegates. The event was organized under the collaboration of CZEBS, iiSBE and APEC. As a continuation of the APEC project EWG 03 2013A: Building Code Harmonization in Energy Smart Community, and further step of project EWG 02 2015A: APEC Nearly (Net) Zero Energy Building Best Practices and Energy Reduction Results Comparative Study, this Symposium also aimed at influence expanding and information collection. This report includes inputs from SNEBRN students coordinated by Dr Remi Charron.

As the co-organizer and funder of the Symposium (workshop on August 20), **Asia-Pacific Economic Cooperation (APEC)** is taking more and more concentration on promoting building energy efficiency among its member economies. APEC has 21 member countries and is the premier Asia-Pacific economic forum whose goal is to support sustainable economic growth and prosperity in the Asia-Pacific region. APEC's initiatives aim to turn policy goals into concrete results and agreements into tangible benefits. APEC has a number of Expert Groups working in different areas, including one on Energy Efficiency and Conservation. APEC helps fund specific projects in collaboration with the various member groups that are relevant to net-zero energy buildings, including APEC-funded project EWG-02-2015A: APEC-NZEB Best Practices.

The venue of this Symposium, **Concordia University Centre for Zero Energy Building Studies (CZEBS)**, whose mission is to reduce the environmental impact of buildings while enhancing their safety and comfort. The meeting was in line with one of its main priorities, which is to facilitate collaborative research aimed at widespread adoption of optimized net-zero energy building (NZEB) design and operation concepts. The Symposium was co-chaired by Dr

Andreas Athienitis and Dr Bruno Lee.

The NSERC Smart Net-zero Energy Buildings Strategic Research Network (SNEBRN) is currently the major Canadian research effort in smart net-zero energy buildings. It brings together 30 Canadian researchers from 15 universities to develop the smart net-zero energy homes and commercial buildings of the future. The Network also includes researchers and experts from CanmetENERGY Natural Resources Canada (NRCan) and Hydro-Québec. Industrial partners from the energy and construction sectors are involved in most projects, developing the know-how that will help them compete in the global market. About 55 SNEBRN researchers, partners and students participated in the workshop.

International Initiative for a Sustainable Built Environment (iiSBE) co-organized this event and is an international non-profit organization whose overall aim is to actively facilitate and promote the adoption of policies, methods and tools to accelerate the movement towards a global sustainable built environment. One of their most important activities, which were facilitated by this workshop, is to support networking activities that help specialists and generalists become familiar with each other's abilities and needs.

This report provides a summary of the key outputs of the Smart Net Zero Resilient Buildings and Communities, APEC-CZEBS-iiSBE Net Zero Built Environment 2015 Symposium and meanwhile, shows a brief introduction of the further work of APEC project EWG-02-2015A: APEC-NZEB Best Practices.

Background

The APEC Nearly/Net Zero Energy Building Program responds to the 25th APEC Ministers Meeting and 21st APEC Economic Leaders' Declaration, to reduce APEC's aggregate energy intensity by 45 % by 2035, using 2005 as a base year, and promote clean, renewable and sustainable use of energy within APEC region.

Recently, some APEC developed economies set the goal to achieve Nearly (Net) Zero Energy Building (NZEB) and already launched some research programs and accomplished successful demonstration projects. So, during the 41th Expert Group Meeting of Energy Efficiency and Conservation under APEC Energy Working Group in 2013, Co-sponsored by Hong Kong, China, Singapore, Canada, Japan and Thailand, People's Republic of China proposed this idea of sharing latest progress on NZEB across the APEC region and gets the support from APEC. The objective of the project EWG 03 2013A is to share the existing experiences and best practices of NZEB to promote this idea among APEC region, which including (1) Exchanging each economy's latest policy and national goals (2) Comparison of different but similar definition of NZEB (3) Sharing Valuable experiences from the demonstration projects and (4) Find Obstacles and barriers to promote NZEB.

Two workshops were held within the project, first was held on October 30th to 31st 2013, 60 participants from 13 economies attended the workshop, the first workshop focus on policies and definitions, research programs and latest technology progress and how building codes upgrading influence the work of NZEB.

80 participants from 15 economies attended the second workshop on October 22nd to 23rd 2014, second workshop focus on monitoring results of pilot project and community and how to promote NZEB in the future in APEC region. Besides speakers and APEC economy representatives, lots of NGOs also were invited to the workshop. Including IFC, UNDP, World Bank, WWF and EF. During the implementation of the program, an NZEB technical working group across the APEC region was established.

NSERC Smart Net-zero Energy Buildings Strategic Research Network of Canada, Architecture 2030 and Lawrence Berkeley National Laboratory of United States, The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, Nearly Zero Energy Building Alliance of China and Korea Institute of Civil Engineering and Building Technology all helped a lot to support this Program. We would like to welcome more related stakeholders will join this network during the implementation of this project to make the network more extensive and

influential.

In the final report of the Phase one, the Long and Mid Term National Goal of NZEB, National Research Team and Stable Funding, Building Codes Upgrading towards NZEB, Financial Support and Subsidy, Energy Reduction Potential of Demonstration Projects, Positive Social & Energy & Environment Influence, Definition Harmonization in the Future, Networks and Organizations are concluded according to different economies.

Also, a series of recommendations are also proposed during the final report:

GOVERNMENT

- Set a long-term, aggressive national target to zero energy buildings with a clear mid-term objective for every step. The goal will support the R& D of research academies and give forward-thinking companies a boost for business planning.
- Financial incentives and subsidy for the pilot and demonstration projects.
- Funding in different climate zones to find the best technology and roadmap to achieve NZEB.
- Harmonize the definition of related terms which will be widely used in the government policies and future action plans.

RESEARCH ACADEMIES

- Kick-off R & D programs which cover passive technology, active technology, renewable energy system, and energy monitoring and management system and technology integration should be
- Testing, evaluation and certification the existing projects that was built with the goal to achieve nearly (net) zero.
- Participate in the continuous improvement of building energy code.
- Deep involvement in the pilot and demonstration buildings.

The phase one report of the program was highly evaluated by the APEC Energy Working Group and could be find in the APEC website here and it had been downloaded for more than 2000 times.

Successful demonstration projects are the most powerful way to promote NZEB in building sector. With the successful demonstration projects that could achieve 75%-90% energy reduction compared with the ordinary building, all stakeholders could be influenced and benefitted, the government officers and building energy codes management organization could find the way to raise up the minimum requirement of building energy consumption step by step, architects and engineers could see and learn the latest building energy efficiency technology progress, also could call for public awareness.

So, with the APEC continuous funding support, the second stage of the program (Phase II:EWG 02 2015A) is ongoing. Phase II focus on Best Practices Study, which will carry out professional in-depth comparative research with the detail information collected of best practices of NZEB pilot buildings among APEC economies, to showcase how tremendous energy savings could be achieved by integrated design, advanced technology utilization and NZE oriented management & commissioning in buildings.

The specific objectives are:

1) To prepare a comprehensive and systematic information collecting template on existing NZEB demonstration projects that could cover complete and necessary information of the target project. The template could also be used for future APEC related studies.

2) To carry out comparative study of different NZBE pilot projects' best practices, including commercial buildings and residential buildings in all climate regions among APEC economies. The technologies of passive design, active energy system, building fenestrations and renewable energy systems will be collected and building energy consumption reduction results will be compared with the average level.

3) To host two workshops. Experts and stakeholders from APEC member economies will be invited to discuss the main challenges and risks during the design, construction and operation of Net Zero Energy commercial building and residential building, experiences and suggestions of how to deal with those problems.

4) To finalize the report <APEC Nearly (Net) Zero Energy Building Best Practices>, the report could be used as a guidebook of NZEB design to support the technology research and development and marketization in APEC regions. The report will be shared on the APEC website after the project is completed.

As one of the fruitful outcome of this project, NZEB best practices information collection was thought to be the critical stage. This Symposium successfully support the latest NZEB related information sharing and collection, which effectively help the formation of NZEB best practices information collection template.

Highlight

The symposium included four plenary speakers and from 3 to 5 speakers on eight different Panels discussing a range of topics from individual technologies, to communities and their interaction with the grid and policies, standards, incentives and education needed to accelerate the adoption of net-zero energy buildings. The plenary speakers and their topic areas tied all of the research together that was presented in the panels.

In the opening plenary session, Dr Paul Torcellini discussed how to make net-zero buildings mainstream by presenting lessons learned from the new NREL facility in Colorado, the largest net-zero energy building in the world. By having clear objectives in the RFP including mission critical objectives (e.g. LEED Platinum), highly desirable objectives (e.g. max 25 kBTU/ft² energy consumption) and "if possible" objectives (e.g. net-zero energy), design teams were able to innovate and develop a design that would meet net-zero energy consumption at a lower cost than similar conventionally built buildings.

Edward Mazria's plenary discussed the importance of moving the building stock to have netzero carbon emissions by 2050 and presented a path to get there for new and existing buildings as well as the building components. In order to have an 85% chance for global warming to stay below 2°C, global emissions need to peak soon and go down to zero by 2050. This highlighted the importance of the research work being done, advancing the state of net-zero energy buildings.

Dr Andreas Athienitis' plenary discussed Network key research achievements, as well as a number of challenges that remain. He stressed that more work needs to be done to integrate solar technologies with energy efficiency, with the building architecture and the building envelope itself. This would need to make use of more intelligent building operation that employs predictive control, and that the focus would need to not only be on energy conservation, but also on peak load shifting and reduction. There is a need to continue to develop building integrated PV systems with thermal energy capture in order to maximize the amount or renewable energy that could be captured and utilized from the building envelope in order to achieve net-zero energy targets in larger multi-storey buildings.

In the final plenary, Nils Larsson discussed his vision of how clusters of buildings could work together to make achieving the required energy savings more achievable. Prospects at the scale of building clusters offer the potential of inter-building synergies. Synergy zones could benefit from optimization of supply and demand of thermal energy, DHW, grey water, and DC

power from building of different uses (residential, office, retail, schools, etc)

The panelists presented a number of different net-zero and near-zero building demonstration projects and case studies; everything from a single house, to large commercial buildings and small communities. There were many similarities between the different projects. There is a need to optimize passive elements first, with an emphasis on passive solar, daylighting and natural ventilation. This is followed by trying to maximize the energy efficiency of lighting and HVAC systems. Finally renewable energy technologies are introduced. The design also needs to consider optimal operation of the building through control strategies, as well as implementing continuous monitoring and commissioning. These similarities existed despite the different locations. Although differences in climate, energy mix and local political will have an influence on a number of design attributes. There were also a number of presentations that discussed the importance of codes and standards and these will be key in accelerating the adoption of net-zero energy buildings.

Related engineering and architecture programs need to be updated in order to train the architects and engineers to work seamlessly as a team. Not only do architects need to better consider the engineering aspects, engineers need to consider the architectural impact of their technologies. Only through tight integration at early design phase, a truly resilient net zero built environment can be designed and implemented. In fact, the sentiment is that there is no fundamental conflict between any of the architectural / social-cultural values of the design and the technical considerations of the implementation. However, there is a lack of a common language that could translate conceptual ideas across different professions and a platform that could facilitate exchange in a quantitative manner. Research work is needed to develop such language and platform. The education system also plays a crucial role in engaging both architectural and engineering students as a team through project based learning and studio work. There were a number of presenters that discussed the importance of considering resilience in building design. Net-zero energy buildings are by nature more resilient than standard construction practices. However, with additional focus on resilience, buildings could be better prepared to adapt and respond to our changing climate.

Symposium Program

Thursday August 20, 2015Location: EV 2.260NZEB Case Studies, Best Practices, Policies and Education Issues

8:00 AM - 8:45 AM	Registration & Light Breakfast
8:45 AM - 9:00 AM	Introduction
	• Dr Andreas Athienitis, Director, Centre for Zero Energy Building Studies, Concordia University
	• <u>Nils Larsson</u> , Executive Director, International Initiative for a Sustainable Built Environment
	• Prof Wei Xu, APEC NZEB Program Overseer. Director of China NZEB Alliance. China Academy of Building Research
9:00 AM - 9:30 AM	Welcome from Dr Benoit-Antoine Bacon, Provost, Concordia University
	Plenary Speaker: Dr Paul Torcellini, Ph.D., Associate Professor, Eastern Connecticut State University
	Moving the Mainstream towards Net-Zero Buildings
9:30 AM - 10:45	Panel 1: NZEB and Low Energy Building Case Studies and Practices
AM	• Sonja Winkelmann, Canadian Home Builders' Association
	The Acceleration of Net Zero: How the Canadian Home Builders' Association is Supporting Industry Innovation
	• Dr Lantz Holtzhower, Construction Management Technology, Oklahoma State University
Chairs:	Examining Initial Steps and Barriers to Net Zero in the State of Oklahoma
Josef Ayoub	• Hamed Hakim, Powell Center for Construction & Environment, University of Florida
TBA	Net-Zero Energy Schools Case Studies: The Starting Block for the Canadian Energy Neutral K-12 Schools
	• Dr Dongwoo Cho, National Green Building, Center Korea Institute of Civil Engineering and Building technology
	Design, Construction, Operation & Monitoring of Zero Carbon Green Home
	• Dr Gao Chun Ping, Building and Construction Authority, Singapore
	Leading the Way to Net Zero: Best Practice of Asia's first retrofitted zero energy building
10:45 AM - 11:00	Break: Atrium, EV Building
AM	
11:00 AM-12:30	Panel 2: NZEB and Low Energy Building Design Practices
PM	• Dr Suwon Song, Building and Urban Research Institute, Korea Institute of Civil Engineering and Building
	Best Practice for NZEB - Seoul Energy Dream Center of Korea
	• <u>Dr Gyuyoung Yoon</u> , Nagoya City University, Japan
	nZEB Oriented Best Practices in Japan
Chairs:	• Dr Carolyn Szum, Lawrence Berkeley National Laboratory
Alan Fung	Best Practice of Green Building Development in Sub-tropic Climate in China
Meli Stylianou	• <u>Dr Yu Zhen</u> , Institute of Building Environment & Energy, China Academy of Building Research (CABR)
	Design and Operation of CABR Nearly Zero Energy Building
	• <u>Dr Wim Boydens</u> , Studiebureau Boydens, Belgium
	The Solarwind Pilot Building in Operation as Driver for Research
	• <u>Michael Lio</u> , buildABILITY Corporation, Canada
	Affordable Net Zero Housing Communities in Canada: The Owens Corning Canada National Net Zero Project
12:30 PM -1:30 PM	Lunch: Atrium, EV Building
1:30 PM - 2:00 PM	Plenary Speaker: Edward Mazria, AIA, Hon. FRAIC, Founder and CEO, Architecture 2030
	Road to Zero

2:00 PM - 3:15 PM	Panel 3: Policies, Standards and Incentive Measures for Net-Zero Energy Building and Communities
	• Dr Hideharu Niwa, Nikkenn Sekkei Research Institute, Japan
	Overview of NZEB in Japan - Discussion on Definition and Evaluation Method of NZEB in SHASE of Japan
	• Dr Wei Pan, Department of Civil Engineering, University of Hong Kong
	Where to Draw Socio-Technical System Boundaries of Zero Carbon Buildings and Communities?
Chairs:	• Dr Michael Emmer, School of Engineering, Computing & Construction Management,
TBA	Roger Williams University
Shicong Zhang	Embodied Energy of Net-Zero Energy Buildings: A Holistic Examination
	• Dr Shicong Zhang, Institute of Building Environment and Energy, China Academy of Building Research
	Research on Performance Criteria of Nearly-Zero Energy Buildings In China
3:15 PM - 3:30 PM	Break: Atrium, EV Building
3:30 PM - 4:30 PM	Panel 4: Education for Net-Zero Energy: Challenges for Architecture and Engineering Programs
	• Ann Edminster, Design AVEnues LLC, Pacifica, California
	Educational Needs for Architects & Engineers to Consistently Create Smart Net-Zero Resilient Projects
Chairs:	• Dr Carmela Cucuzzella, Design and Computation Arts Department, Concordia University
Bruno Lee	When Environmental Evaluation meets Architecture Critique
Carmela	• <u>Dr Michael Jemtrud</u> , School of Architecture, McGill University
Cucuzella	The Architecture Design Studio and High-Performance Building: Challenges and Reflections
	• Dr Bruno Lee, Department of Building, Civil & Environmental Engineering, Concordia University
	Preparing Future Engineers to Collaborate in a Multidisciplinary Environment
4:30 PM - 5:45 PM	Tour A: Concordia P. Fazio Solar Simulator – Environmental Chamber Laboratory
	Tour B: John Molson Building – Building Integrated Photovoltaic/Thermal System
6:00 PM	Symposium Panellist Dinner

Friday August 21, 2015Location: EV 2.260

NZEBs, Communities and Enabling Technologies

9:00 AM - 9:30 AM	Welcome from <i>Dr Amir Asif</i> , Dean of Engineering & Computer Science, Concordia University			
	Plenary Speaker: Dr Andreas Athienitis, Ph.D., P.Eng., FCAE			
	Dr Andreas Athienitis, Director, Centre for Zero Energy Building Studies, Concordia University			
	Towards Net-zero Energy Buildings and Communities: Challenges and Opportunities			
9:30 AM -10:45 AM	Panel 5: Design of Net-Zero Resilient Communities			
	• Dr Caroline Hachem-Vermette, Faculty of Environmental Design, University of Calgary			
Chairs:	Towards resilient development: Canadian initiatives			
Chris Kennedy	• Dr Scott Bucking, Department of Civil and Environmental Engineering, Carleton University			
Caroline H-	Net-Zero Resilient Communities: Three Canadian Case-Studies			
Vermette	• Dr Miguel Aloysio Sattler, Federal University of Rio Grande do Sul, Dept of Civil Engineering, Brazil			
	A Happy Community's Search for Resilience			
10:45 AM-11:00 AM	Break: Atrium, EV Building			
11:00 AM - 12:00	Panel 6: Building Integrated Solar as an Enabling Technology for Net-Zero Energy and Resilience			
AM	• Dr Soteris Kalogirou, Dept of Mech Engineering and Materials Science and Engineering,			
	Cyprus University of Technology			
	Building Integrated Solar Thermal Systems: Technology Appraisal			

	<u></u>
Stephen Harrison	Building Integrated PV-thermal collectors and systems
Soteris Kalogirou	• Dr Annamaria Buonomano, Dept. of Industrial Engineering, University of Naples Federico II, Italy
	Modelling PCM, BIPV/T and other innovative technologies for energy efficiency in buildings: a case study
	• <u>Dr Esteban Zalamea León</u> , Department of Design and Theory of Architecture, University of Bío Bío, Chile
	Assessment of roof capacity for active solar energy generation in Housing Developments
12:00 AM - 1:00 PM	Lunch: Atrium, EV Building
1:00 AM - 1:30 PM	Plenary Speaker: Nils Larsson, FRAIC
	Nils Larsson, Executive Director, International Initiative for a Sustainable Built Environment
	Systems model for small urban zones
1:30 PM - 3:30 PM	Panel 7: Energy Efficiency Technologies and their Integration with Renewables
	• Dr William O'Brien, Department of Civil and Environmental Engineering, Carleton University
	Design of resilient and robust high-rise residential buildings
	• <u>Dr Umberto Berardi</u> , Faculty of Building Science, Ryerson University
	The development of mPCM enhanced tile for high performance buildings
	• Dr Hua Ge, Department of Building, Civil & Environmental Engineering, Concordia University
Chairs:	High performance building envelopes for Smart net-zero resilient buildings
Radu Zmeureanu	• Dr Ted Stathopoulos, Department of Building, Civil & Environmental Engineering, Concordia University
Sophie Hossatte	Wind Energy Potential of Urban Areas
	• Dr Alan Fung, Department of Mechanical and Industrial Engineering, Ryerson University
	BIPV/T + ASHP: Technologies for Near and Net-Zero Energy Buildings
	• <u>Dr Li Huai</u> , Institute of Building Environment & Energy, China Academy of Building Research
	Performance analysis of GSHP system in CABR nearly zero energy buildings (NZEB)
3:30 PM - 3:45 PM	Break: Atrium, EV Building
3:45 PM - 5:00 PM	Panel 8: Optimizing Building Operation, Storage and Grid Interaction
	• Dr Cynthia Cruickshank, Dept of Mechanical and Aerospace Engineering, Carleton University
	Heat Pump Water Heating Control Strategy Optimization for Cold Climates
Chairs:	• Dr Lukas Swan, Department of Mechanical Engineering, Dalhousie University
Jose Candanedo	Energy storage will enable net-zero energy buildings to become mainstream
Jocelyn Millette	• Dr Liangzhu Wang, Department of Building, Civil & Environmental Engineering, Concordia University
	Modelling and Design of Natural and Hybrid Ventilation Systems for High Performance Buildings
	• Justin Tamasauskas, Natural Resources Canada, CanmetENERGY-Varennes
	Advanced Control of Heat Pumps and the Impact on Building/Grid Interactions
5:00 PM - 6:00 PM	Closing Discussion – Main Symposium Points

• Dr Christophe Ménézo, Chair INSA-EDF/Fédération sur l'Energie Solaire - FédEsol FR 3344/USMB, France

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building

Chairs:

Key Points from Presentations

Panel 0: Introduction

0-1 Moving the Mainstream towards Net-Zero Buildings

Paul A. Torcellini, Ph.D., P.E. Associate Professor, Eastern Connecticut State University

- Definition of Zero Energy Building: 1) Zero Energy Building (ZEB); 2) Zero Energy Campus; 3) Zero Energy Portfolio; 4) Zero Energy Community.
- Largest NZEB in the world NREL Colorado.
- Trends for Commercial sector have seen substantial gains in energy efficiency in the past, but growth in new buildings has increased faster leading to a net-increase in energy consumption (Figure 0-1-1).

Figure 0-1-2

- Presented Great Potential in Commercial Buildings shows the variation of building energy consumption from the existing state of commercial buildings standard (2003 CBECS) –new buildings base scenario (Standard 90.1-2004) – Max Tech energy efficient scenario—Max Tech energy efficient scenario.
- Progression of energy savings goals have seen them becoming measurable (green building, LEED, 30% less than ASHRAE 90.1-2004, design buildings to use less than 25 kBTU/ft2, design net-zero.
- Presented a graph (Figure 0-1-2) with 4 quadrants x-axis (energy savings) y-axis (costs) stating that we should put more focus on bottom left (less costs, less energy) instead of top right (high cost, less energy).

- Problem definition is key. Nee clear RFP Objectives with prioritized goals (e.g. mission critical LEED platinum, highly desirable 25 kBTU/ft2, if possible, net-zero energy)
- Show a design-build process to achieve the RFP Objectives: 1. Owner made tough decisions up-front(set budget, Sought maximum value for that budget, Prioritized goals);
 2. Design-Build procurement process; 3. Allowed design-build team to use creativity to maximize value
- Strong leadership and management is the critical point to replicate the process .
- Lower cost than other similar conventionally built buildings (Figure 0-1-3).
- Actual consumption matches modelled predictions (Figure 0-1-4).

Figure 3

Figure 4

0-2 Road to Zero—Why? When? What? How?

Edward Mazria FAIA, FRAIC. Architecture 2030

- Show "Pathways for Fossil Fuel Carbon Emissions to 2100"--The global carbon emissions will achieve its peak by 2016.
- Urban environments are responsible for 75% of all human-produced global greenhouse gas emissions, among which Building products: 2015 35%, 40% 2020, 45% 2025, 50% 2030
- Emissions peak , eliminate CO2 emissions by 2070 to have 66% chance of staying below 2°C
- Emissions peak by 2020, phase out by 2050 gives an 85% chance of keeping below 2°C
- Equivalent of one NYC worth of building areas added every 35 days until 2030
- By 2030, over80 billion m2 (900 billion ft2) of new and rebuilt buildings will be constructed in urban areas worldwide.
- Present the 2030 challenge (Figure 0-2-1) and roadmap 2050 (Figure 0-2-2) (www.2030palette.org for online resource)

- Architecture 2030 set a collaboration with 70% of the top 20 A/E firms, 54% of the U.S A/E firms, and 63% of U.S A/E firms believe they can meet the 2030 Challenge targets(DI survey).
- By 2030, over 80 billion m2 of buildings will be built new and rebuilt in urban areas worldwide, Global building construction during this period is projected to occur 38% in China; 15% in U.S. / Canada; 9% in India
- Its publication Road to Zero Emissions focuses on the design of the United Nations Framework Convention on Climate Change (UNFCCC) 2015 agreement, with a goal of reaching a new agreement to prevent dangerous climate change, applicable to all countries, by keeping global average temperature increases under 2°C above preindustrial levels.
- Roadmap 2050 guidelines and action items for developed and developing countries to formulate custom Building Sector CO2 emissions reduction schedules to 2050.
- Show various carbon emission savings (Figure 0-2-3) and budget savings (Figure 0-2-4) with different building operations from 2005-2030.
- Sefeira real-time energy simulation of the building during design. Needed with quicker turnaround times, especially in China seeing 3 mth from design to construction

- The International Union of Architects (UIA), representing over 1.3 million architects in 124 countries, announced that it had unanimously adopted the 2050 Imperative.
- The Carbon Neutral Cities Alliance is a new collaboration of international cities committed to achieving 80% emissions reductions by 2050 or better.
- New York City is planning to overhaul the energy-efficiency standards of its buildings in order to decrease the greenhouse gas emissions by 80 percent by 2050 from 2005 levels.

0-3 Towards Smart Net-zero Energy Buildings and Communities: Challenges and Opportunities

Dr Andreas Athienitis, Ph.D., P.Eng., FCAE, Director, CZEBS, Concordia University, Canada

- Net-zero buildings need to be smart, as they will be interacting with the smart-grid
- Quote with ASHRAE vision 2020: NZEBs are becoming adopted by many countries as a long term target
- Put up with the path to net-zero: promotes an integrated approach to energy efficiency and renewable.
- The major international trends in high performance buildings includes: 1. reduce and shift peak electricity demand from buildings; 2. efficiently integrate new energy technologies
- Explain the main differences between current buildings and future smart net –zero energy building from four parts: 1. Building fabric; 2. Heating and Cooling; 3. Solar systems/renewables; 4. Building operation
- SNEBRN put up with its vision: to perform the research that will facilitate widespread adoption in key regions of Canada, by 2030, of optimized NZEB energy design and operation concepts suited to Canadian climatic conditions and construction practices.

- SNEBRN put up with its goal: Investigate optimal pathways for reaching net-zero energy at building and neighborhood levels through combinations of passive systems and active technologies.
- NSERC Smart Net Zero Energy Buildings Strategic Research Network involves
 researchers from SBRN, and other partner institutes with 5 themes: 1. Integrated solar
 and HVAC systems for buildings; 2. Active building envelope systems and passive solar
 technologies; 3. Mid-to long-term thermal storage for buildings and communities; 4.
 Smart building operating strategies; 5. Technology transfer, design tools and input to
 national policy.
- Smart NZEB concept-- Optimal combination of solar and energy efficiency technologies and techniques provides different pathways to reach net-zero
- EcoTerraTM EQuilibriumTM House (AlouetteHomes)
- Athienitis house-- Passive air circulation in BIPV/T melts snow in winter
- JMSB BIPV/T SYSTEM
- Varennes NZEB Library design (Montreal)

0-4 A systems model for small urban zones that may bring us

closer to nearly-zero

Nils Larsson, FRAIC, Executive Director, iiSBE

- iiSBE website: See www.iisbe.organd http://iisbecanada.ca
- NZEB more readily achievable, but new buildings are small part of building stock, and meeting net-zero for entire building stock very difficult, if not impossible.
- Prospects at the scale of building clusters offering the potential of inter-building synergies.
- Set up a concept model Synergy Zones to present the potential role of very small urban areas, or building clusters in the form of synergistic performance in energy consumption, emissions and water consumption and other less critical issues.
- Synergy zones could benefit from optimisation of supply and demand of thermal energy, DHW, grey water, and DC power from building of different uses (residential, office, retail, schools.)
- Provide a diverse occupancy profiles provide opportunities (user profiles for an office, restaurant, hotel, and classroom).

- Building occupancy type and area determine the demand for space heating, consumption of potable and greywater, leading to surpluses or deficits.
- For further development, the Synergy Zone model needs to be further evaluated; pilot would help work out details. A concept is presented that builds on these ideas, in the aspect of study.
- Working at the scale of urban clusters of buildings offers the prospect of inter-building synergies in thermal energy, greywater and DC power systems, and this provides a realistic possibility of moving closer to nearly zero performance levels
- Post-Occupancy Evaluation
- SBTool
- IDP-Integrated Design Process

Panel 1: NZEB and Low Energy Building Case Studies and Practices

1-1 Design and Operation of CABR Nearly Zero Energy Building

Dr Zhen Yu, Institute of Building Environment & Energy, China Academy of Building Research (CABR)

- China is the biggest market of Green Building which owns a great increase of certified green buildings. Number of ZEB demonstration projects, in various climate zones (with most currently under construction)
- CABR IBEE set up the target 25 kWh/m2 (zero use of fossil fuel for heating in winter and cooling energy consumption reduced by 50% in summer), low construction costs in China makes it difficult to build actual net-zero buildings. Instead aiming for near zero energy buildings.
- Completed 2014-07-11, one year of energy data now available.
- Building itself is a comprehensive research platform with different HVAC possibilities/configurations and lots of instrumentation to monitor actual performance.
- Present a detailed analysis on actual performance data, including energy consumption, measurement verification, seasonal thermal storage, and GSHP
- Actual HVAC + lighting (22 kWh/m2), pump energy consumption higher than expected, continuous monitoring & commissioning should lead to further reductions.

1-2 Examining Initial Steps & Barriers to Net Zero in the

State of Oklahoma

Dr Lantz Holtzhower, Construction Management Technology Department, Oklahoma State University, USA

- Oklahoma Model calls for Energy Economy Balance (from the aspect of natural gas, oil, and coal) and electricity production with renewable energy.
- Oklahoma Energy Security Act 2010 set the goal of 15% renewables by 2015, up to 25% of that from energy efficiency & demand side management. 2014 were at 20.85 RE and 11% from efficiency, lots of RE from large scale wind farms.

- Oklahoma get a good Renewable Potential in wind and solar
- Energy Efficiency measures -- include\$4K income tax credits for personal, and corporates are courage to produce renewable energy to decrease the tax credits.
- 2010 all public buildings mandated to be LEED. In2011, reversed by Senate as the state is very protective of its natural gas industry.
- Need baby steps (scale ROI, more wind farms, geothermal neighborhoods, more solar installations)

1-3 NET ZERO ENERGY SCHOOLS: The starting block for

the Canadian energy neutral K-12 schools

Hamed Hakim, Powell Center for Construction & Environment, University of Florida, USA

- Sustainable Schools and Green School Concept are adopted in Canada (David Suzuki Public School, Samuel Brighouse Elementary School)
- Many benefits of sustainable school, environmental, economic & environmental
- According to the International Energy Agency (IEA), the building sector is the second largest energy user in Canada.
- Over 18,425 elementary & secondary schools in Canada with mean EUI of 213.9 kWh/m2 (SCIEU, 2009)
- Over 450 LEED registered schools (16% certified, and 2% platinum)

Figure 1-3-1

- DAVID SUZUKI Public School
- SAMUEL Brighouse Elementary School
- Looked at low-energy schools in US with similar climate zones to make suggestions for Canada to reach net-zero energy.
- Many strategies applied to all studied buildings (PV, optimized orientation, natural ventilation, daylighting, geo-exchange, high performance envelope/lighting/HVAC, automated sensors) that should be applicable in Canada making NZES attainable.

1-4 Design, construction, operation & monitoring of Zero Carbon Green Home

Dr Dongwoo Cho, Korea Institute of Civil Engineering and Building Technology

- Korea has set target to reduce the greenhouse gas emissions according to Presidential Committee on Green Growth in 2009. Among which 26.9% GHG reduction in building sector by 2020 and for detailed goas: 1. Low energy house (50% reduction in H/C) in 2012; 2. Passive House (90% reduction in H/C) in 2017; 3. Zero-energy House (ZERO energy) in 2025.
- Passive House criteria and energy saving criteria in Korea
- Policy for promotion of ZEB: 1. to generate many case studies (2014 low-rise, high-rise 2015, towns 2016) and create a market for zero energy buildings; 2. Building standards, tax benefits, technical support to reduce additional costs
- Promotion of integrated planning & design process and frameworks in each phase
- Case study—Zero Carbon Green Home Project: 8 storey-15 unit finished in 2013 (with non-heated space for stairs & elevators). 1. Design, 2. Construction, 3. Operation (3 different operating conditions – artificial occupancy, actual occupancy, simulated occupancy), 4. Energy Monitoring
- Heating energy, typical 9088 kWh/yr, ZCGH 1,884 kWh/yr per unit. ZCGH saves 80% on heating, and 85% on electricity compared to conventional apartments.
- Monthly average PV generation 255 kWh/unit or 85% of the energy demand. Current payback period is 17 years, which should be reduced by incentives and growth in the market.

1-5 Leading the Way to Net Zero: -Best Practice of Asia's first

retrofitted zero energy building

Dr Chun-Ping Gao, Building and Construction Authority Singapore

- 2 steps for Guiding Principles: 1. Passive Systems (Efficient envelope, minimise solar heat gain, capitalize daylighting); 2. Active Systems (Efficient Lighting, Efficient ACMV, Active Control)
- For building envelope: insulated core wall, different types of shades, light shelves, vertical greenery, innovative solutions for façade, pioneering use of materials (Solar Assisted Stack Ventilation)

- For inside building: Personalised ventilation, Light pipes, Displacement Ventilation, Single Coil Twin Fan
- Needed to move chiller to neighbouring building to make room for large PV system. Even with whole roof system, didn't have quite enough area for PV. (Also has light tubes and solar assisted stack ventilation that has solar chimney)
- Green wall system important in tropical climates. Reduces external surface temperature, reducing heat flux & energy consumption.
- After 2 years, natural ventilation zones needed to add air conditioning.
- Final energy consumption was less than simulated consumption with most of the difference attributed to lower plug loads. Over 25000 visitors since 2009.
- Future rotatable laboratory building to be situated on the roof.

Panel 2: NZEB and Low Energy Building Design Practices

2-1 Best Practice for NZEB - Seoul Energy Dream Center of

Korea

1-2)

Dr Suwon Song, Korea Institute of Civil Engineering and Building Technology

- 3762 m² demonstration building built in Seoul constructed in 2012
- Combination of Passive Design+ Active Design+ Renewable energy (Figure 2-1-1), energy savings 80% from ECMs, 20% from PV Panels with 272 kWp system (Figure 2-

Figure 2-1-1

Figure 2-1-2

- Radiant heating and cooling system (commercial EU system) with GSHP
- Heat recovery ventilation systems
- Design conditions for cooling mode: 1. Natural Cooling Mode; 2. Tuber Chiller
 Operation Mode; 3. Chilled Water Buffer Tank (3,000 L); 4. Cooling Tower for Chiller
 Operation
- 2013 annual electricity use 40.61 kWh/m2, annual electricity ner-income of \$7435/yr
- Savings as expected. Additional savings expected from further commissioning of system.

2-2 nZEB Oriented Best Practices in Japan

Dr Gyuyoung Yoon, Nagoya City University, Japan

- Annual climate variation (temperature, relative humidity) in 3 cities: Naha, Tokyo, Sapporo
- Strategies to achieve ZEB (Passive then Active then RE measures) (Figure 2-2-1)
- Best practices from 21 buildings of various sizes, uses and locations (Figure 2-2-2):Three buildings achieved net-zero energy
- Fashionable passive measures: Natural ventilation, Night purge; Solar shading devices; Daylight Utilization; Exhaust air and reuse; Perimeter buffer system
- Fashionable Active measures: separate sensible & latent HVAC systems; Radiation H/C system (Ductless system); Task & Ambient Lighting / HVAC system; LED lighting; Fresh air volume control by CO2 concentration; Large temperature difference water supply; High efficiency heat pump module chiller; Ground heat source heat pump; Desiccant HVAC system; TES

Figure 2-2-1

Figure 2-2-2

- One of most important measures is proper energy management and commissioning
- Adapting more energy saving measures, coupled achieve further 40% reduction in consumption. 400 to 600 MJ/m² would be a minimum possible value for energy intensity

Figure 2-2-3 nZEB oriented Best Practices on ZEB Chart

2-3 Best Practice of Green Building Development in Subtropic Climate in China

Carolyn Szum, Lawrence Berkeley National Laboratory, USA

- Shenzhen IBR HQ building located in Shenzhen, Sub-tropic climate with HDD (18C): 227; CDD (18C):2459,
- Total floor space: 18,000 m2 (conditioned 17,600 m2). Annual energy consumption: 60kWh/m2 (large data centre uses up about 1/3 of energy consumption).
- Chinese green building "Three-Stars" label
- 20-30 measures and technologies chosen to be applied to achieve nearly zero energy building among many other project goals (including energy savings, water savings, material savings, IEQ...)
- HVAC system use WSHP for cooling and pilot radiant cooling system
- Natural ventilation used during Non-AC seasons, nearly most of the year
- Integrated PV 3 ways: on rooftop, west façade semi-transparent thin-film, horizontal placement on façade to serve as solar shading devices. Also have small wind on the roof. RE make up 6% of building energy use.
- Design-Build-Operate model
- Book available at Amazon.com that describes the building

2-4 The Solarwind Pilot Building in Operation as Driver for

Research

Prof Wim Boydens, Ghent university / CSTO boydens engineering group, Belgium-Luxembourg-Vietnam

- The Solarwind office building (see general info https://vimeo.com/116782026)
- Designed 2008, inauguration November 2012, 20,000 m2 office building
- Combining multiple Renewable Energy Systems (RES) in 10.000 m² office building
- Optimize control, and one step further is to optimize the design to go with the optimized control.
- Heat supply with 3 renewable energy: 65% of the geothermal, 20% of the biomass, and 15% of the solar for heating
- TABS Emission system: cca (concrete core activation)
- Thermal energy storage on 3 levels –geothermal, building integrated (concrete slabs) and 20 m3 tank
- Building Management System (try to influence users, as well as optimise control to reduce energy). For this type of building they anticipate 2 years of fine tuning and field optimisation.
- Dynamic simulations, commissioning, monitoring, advanced control, optimizing auxiliary energy use
- Previous project: EU-EraSME-GEOTABS project (2011-2013)
- Holistic system approach taking into account dynamic interaction of the components.

2-5 Affordable Net Zero Housing Communities in Canada: The Owens Corning Canada National Net Zero Project

Michael Lio, buildABILITY Corporation, Canada

- Work with builders to mainstream technologies, i.e. making net-zero "Production Builder Friendly"
- Definition of NET ZERO ENERGY HOME: A home that employs enhanced energy efficiency design strategies to cost effectively reduce energy needs, while supplementing with renewable energy technologies, with the result that the building consumes equal to or less energy than it produces on an annual basis

- Project mission: 5 net-zero communities (minimum 5 houses) across the country (1 condo, 1 row, 3 single family projects) to be completed by March 2016
- No direct funds going to the builders
- Ultimate long term goal is to implement net-zero into the building code by 2030

• Similar design features seen across projects including PV, triple glazed windows, heat pump water heater, cold climate heat pump, home energy monitor (most have R-60 blown attic, R24+R10 XPS for walls)

Panel 3: Policies, Standards and Incentive Measures

for Net-Zero Energy Buildings and Communities

3-1 Overview of NZEB in Japan - Discussion on Definition

and Evaluation Method of NZEB in SHASE of Japan

Dr Hideharu Niwa, Nikkenn Sekkei Research Institute, Japan

- SHASE Society of Heating Air Conditioning and Sanitary Engineering
- Self-sufficiency of energy recognized from viewpoint of energy security after earthquake.
- **Definition and Evaluation Method of NZEB in SHASE of Japan:** A Net Zero-Energy Building is a building that has a high energy saving through load reduction, natural energy use and high energy efficiency without decreasing the environmental quality both indoor and outdoor.

- **Boundary definition:** 1)Physical Boundary (ZEB energy balance is measured in the site boundary); 2)Accounting Balance Boundary (Targeted Energy Usage) (Figure 3-1-2)
- **Qualitative definition:** Quantitative Definition with boundary around building Energy Generation = Energy Consumption (G=C)
- Net Energy Standard Measurement, normalized consumption = normalized generation
- Classifications include ZEB ready, Nearly ZEB and Positive Energy (Figure 3-1-1)

3-2 Where to Draw Socio-Technical System Boundaries of

Zero Carbon Buildings and Communities?

Dr Wei Pan, Department of Civil Engineering, University of Hong Kong

- Background of Zero Carbon Building in Hong Kong, China (buildings consume 92% electricity in Hong Kong, China, residential 26%, commercial 66%)
- 3 challenges for Zero Carbon Building development in Hong Kong, China: high rise, density, hot and humid climate, 7 million people
- Caveats: need to draw difference between energy and carbon
- Vision: To help position Hong Kong, China as a world-class knowledge-based, innovation-driven and multi-stakeholder-engaged hub for zero carbon building in urban environments.
- Hong Kong Zero Carbon Partnership to develop zero carbon buildings in urban environments solutions. Target: 100 organisational members; 5000 individual participants

Figure3-2-1 Ten Elements of Zero Carbon Model

Seminar title	Participants
The principles of ZCB: within and beyond Hong Kong, China	All in the demand, supply, regulation and institution groups of ZCBs; with an international speaker: 150 participants
The practices of ZCB: good practices	All, but focus on supply & demand groups; with
and lessons learnt	an international speaker;150 participants
The policies of ZCB: international	All, but focus on regulation & institution groups;
learning for Hong Kong, China	with an international speaker;150 participants
The priorities of ZCB: addressing the	All in the four groups; with an international
challenges and maximizing the opportunities	keynote speaker; 150 participants

3-3 The Acceleration of Net Zero: How the Canadian Home

Builders' Association is Supporting Industry Innovation

Sonja Winkelmann, Canadian Home Builders' Association

- Responsibility-- Pushing to support members' voluntary adoption of NZE
- Objectives-- technical standard, Track and measure success, program development
- Definition of NZE Home: A NZE home is one that is designed, modelled and constructed to produce as much energy as it consumes on an annual basis.
- NZE Ready = A NZE home that has not yet installed the renewables.
- PILOT Technical Specifications-- Key priorities for Year 1(NZE labelling Program, Marketing and Communication Initiative, Educational Initiative, and Financing Initiatives)
- Cost of NZE upgrade around \$60K with some builders reporting cost-neutral achievement when considering energy savings.
- Labelling program BASE R2000+ERS 0 GJ + Energy Star requirements+ RE design evaluation & installation verification+ energy monitoring device with real time information for consumer
- Future Program Development:
- Fine tune NZE MURBs and NZE Renos form Working Groups Fall 2015
- NZE Communities (District/Micro Energy & CHP) form Working Group Fall 2015
- Top 10 "Must Have" Home Features:
- 1. Walk-in closets; 2. Energy efficient appliances; 3. Overall energy efficient home; 4.
 High-efficiency windows; 5. Kitchen islands; 6. Linen closets; 7. Open concept kitchens;
 8. Large windows; 9. 2-car garage; 10. Walk-in pantry

3-4 Research on Performance Criteria of Nearly-Zero Energy

Buildings in China

Dr *Shicong Zhang*, Institute of Building Environment and Energy, China Academy of Building Research

- Building Codes and Standards are the most fundamental and effective measure to promote NZEB development (according to APEC program conclusion).
- China building energy codes achieved 50-70% energy savings since 1970s, and still have 70-90% saving potential in the future.

- China Academy Building Research Nearly Zero Energy Building as a Pilot building July 2014 (50% cooling energy reduction in summer, no fossil fuel in winter)
- Need performance criteria of Passive Nearly-Zero Energy Building for China to enable certification
- Key points (Climate, Indoor Environment (increase indoor temperature as occupants find it acceptable), Behaviour, Building features, Energy use features)
- Did technical analysis to find best combination of design strategies to achieve nearly netzero energy buildings in the different climate zones.

Severe Cold Zone—improve building envelope, increase G value, no cooling need in summer

Cold Zone-- improve building envelope

Hot Summer Cold Winter—good shading, floor insulation, no heating need in winter Hot Summer Warm Winter Zone—Shading is important, plus floor insulation

Panel 4: Education for Net-Zero Energy: Challenges

for Architecture and Engineering Programs

4-1 Educational Needs for Architects & Engineers to

Consistently Create Smart Net-Zero Resilient Projects

Ann Edminster, Design AVEnues LLC, Pacifica, California, USA

- Designers' imperative: buildings and communities that are:
- Zero net energy (or better!), Resilient, Smart
- Getting to ZRS takes:
- 1. Explicit goals, set early along with priorities
- 2. Effective collaboration: Integrated Design + Delivery
- 3. A structured process: checking progress frequently
- 4. Quality management: throughout construction, high quality is not the industry standard
- Explicit goals set early along with priorities -- map to show you how to get there
- Education -- Must be not only a transmission of culture but also a provider of alternative views of the world and a strengthener of the will to explore them.

Figure 4-1-1 Business as usual

• Quality Management

Figure 4-1-2 Integrated design & delivery

4-2 When Environmental Evaluation meets Architecture Critique

Dr Carmela Cucuzzella, Design and Computation Arts Department, Concordia University, Canada

- Construct a design matrix of architectural expectations vs environmental strategies.
- Help architects see how the environmental goals can by met in synergy with architectural goals.

4-3 The Architecture Design Studio and High-Performance Building: Challenges and Reflections

Michael Jemtrud, School of Architecture, McGill University, Canada

- Overview of Architectural Design course and a Sustainable Design Course offered last school year
- Summary of teaching content- high-performance building principles and practices
- Building research Establishment Environmental Assessment Method (BREEAM) scheme can be used to evaluate sustainability in design as well as Passive House guidelines
- BREEAM Communities categories: 1. Governance, 2. Social and economic wellbeing, 3. Esources and energy, 4. Land use and ecology, 5. Transport and movement

Figure 4-3-1 Strengthening stakeholder engagement

- Project-based interdisciplinary approach to show different pillars of sustainability
- Architectural Design -- Tansey Development, Montréal, QC
- Sustainable Design -- Centre Magnetique, Lac-Mégantic, QC

Panel 5: Design of Net-Zero Resilient Communities

5-1 Context for Net-zero Resilient Communities

Chris Kennedy, University of Toronto

- Total investment needs for China's green building development in 2014-2020—520 billion Yuan
- The 3 parts of Infrastructure Sectors in Virtuous Cycle of Low Carbon Growth in China show strong interactions (Figure 5-1-1)

- Compare the different normalized value in various building codes with U-values for floors, roofs, walls and windows.
- Compare different low carbon infrastructure strategies for various cities (Figure 5-1-3)

Figure 5-1-3

5-2 Towards resilient cities: Canadian initiatives

Dr Caroline Hachem-Vermette, Faculty of Environmental Design, University of Calgary, Canada

- Design of neighbourhoods should be considered as holistic ecosystems
- Current community design process in industry not conducive to optimal energy management and sustainability
- A number of initiatives are underway to look at optimising solar potential of communities

5-3 Net-Zero Resilient Communities: Three Canadian Case-

Studies

Dr Scott Bucking, Department of Civil and Environmental Engineering, Carleton University, Canada

- Optimisation study of annualized net-present value of buildings found to be at around 50 kWh/m2
- Three case studies presented: West 5 Community in London, Zibi Community in Ottawa, Burlington Innovation District at McMaster University
- Case 1: Zibi Community, Ottawa, ON, 40 acres; NZCarbon; http://zibi.ca
- Energy Modelling Report
- Case 2: West 5, London, Ontario, 70 acres, 2000 living units, 100,000 ft2 offices, 150,000 ft2 retail
- Smart energy plan is design for economic development, micro- grid with CHP
- •
- At community scale, it is not clear where to invest limited money, on individual buildings, or on community energy systems, use BID Simulated Performance (Figure 5-3-1)

Figure 5-3-1

Panel 6: Building Integrated Solar as an Enabling

Technology for Net-Zero Energy and Resilience

6-1 Building Integrated Solar Thermal Systems: Technology

Appraisal

Dr Soteris Kalogirou, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology

- COST Action TU1205 (2013-2017) did survey of building integrated solar thermal systems (BISTS)
- Many examples of solar thermal collectors used as balustrades in balconies (especially in China)
- Transpired solar collector (SOLARWALL) used in many applications
- Many commercial technologies exist, and the TU1205 will explore developing different types of BISTS technologies. www.tu1205-bists.eu

6-2 Building Integrated PV-thermal collectors and systems

Dr Christophe Ménézo, Chair INSA-EDF/Fédération sur l'Energie Solaire - FédEsol FR 3344/USMB, France

- PV/T development has been going on for more than 35 years.
- Three air based prototypes developed (pleated double-skin façade, veranda/rooftop, façade/rooftop) that could be used in retrofit applications, and a liquid type PV/T collector developed
- Water type collectors still have issues with aging, stagnation, reliability. Air systems are being used in more cases.
- PV/T makes it easier to develop net-zero and net-positive energy buildings.

6-3 Assessment of Roof Capacity for Active Solar Energy Generation in Housing Developments

Esteban Zalamea, Department of Design and Theory of Architecture, University of Bío Bío, Chile

• Large amount of housing being built, wanted to study potential of solar energy generation from roofs. Potential generation of 19789 MWh/year for 3132 houses

• Single pane windows and minimal insulation used in houses in Chile leads to a large heating demand. With increased insulation and PV/T on roof can lead to significant over production that could be used to supply neighbouring houses.

6-4 BIPV/T + ASHP: Technologies for Near and Net-Zero

Energy Buildings

Dr Alan Fung, Department of Mechanical and Industrial Engineering, Ryerson University, Canada

- Residential sector in Canada consumes energy mostly for space heating (63%) and domestic hot water (17%).
- PV costs are approaching grid parity. Building integration and thermal energy usage will further decrease energy generation costs.
- PVs only convert 12 to18% from solar to electricity.
- Proper utilisation of low-grade thermal energy of PV/T systems is a challenge. Coupling with cold climate air-source heat pump offers good promise.
- Test hut being built in full-scale (30 ft *25 ft) to develop a PV/T system with heat pump and ventilated gravel/concrete bed and PBC-water storage tank.
- 3 main systems of the test facilities:
- Building Integrated Photovoltaic/Thermal collector (BIPV/T) system
- Integrated Heat Pump (HP) system
- Thermal Energy Storage (TES) system including ICF Wall, Ventilated Concrete Slab, Gravel/Sand bed, and PCM-Water Tank storage
- 3 major parts included in the test hut as thermal energy storage:
- Ventilated Sand / Gravel Bed
- Ventilated Concrete Slab (VCS).
- Insulated Concrete Form (ICF) Wall
- Need to develop standardized way to integrate PV to houses.

6-5 Modelling PCM, BIPV/T and other innovative technologies for energy efficiency in buildings: a case study

Dr Annamaria Buonomano, Department of Industrial Engineering, University of Naples Federico II, Italy

APEC Asia-Pacific Economic Cooperation

APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building

- Building case study in Naples, Italy. Non residential, includes office spaces, conference area, etc.
- Parametric building simulation done to minimize energy consumption evaluating many different parameters.
- Excess thermal energy generation to be supplied to a neighbouring building
- Of the number of technologies studied, PCM was not found to have savings that justified the costs.

Panel 7: Energy Efficiency Technologies and their Integration with Renewables

7-1 Design of resilient and robust high-rise residential buildings

Dr Liam (William) O'Brien, Department of Civil and Environmental Engineering, Carleton University, Canada

50% more high-rise units housing starts compared to single detached, but lack of research into this building type, despite the many unique challenges in this sector (Thermal bridging, Overheating, Extreme radiant temperatures, Single-sided (only) natural ventilation, Cold floors near balconies, Limited renewable energy collecting surfaces) (Figure 7-1-1).

Figure 7-1-1

- New condo field study--20 participants in condominiums built in the past 10 years to find the comfort impact (Thermal comfort, adaptive behaviours, interior conditions like window size and billing type)
- Study found that people that pay for their heating keep their setpoint on average at 20.1°C vs 21.9°C for bulk metered units.
- Thermal bridging is important to consider in modelling high rise buildings
- In terms of resilience occupant interactions can be as important as design elements.

7-2 The development of mPCM enhanced tile for high

performance buildings

Dr Umberto Berardi, Faculty of Engineering and Architectural Science, Ryerson University, Canada

- With high number of highly-glazed high rise buildings built in last decade, integrating additional thermal mass would help address some comfort issue. Passive PCM-material would be good option to provide high thermal storage potential in low surface area.
- Many of PCM projects done in Canada have focused on lab project, lack of research in real project applications.
- Adding paraffin to concrete can increase its heat storage capacity by 2-3 times without impacting its structural strength too much.
- Paraffin embedded concrete tiles first used in Solar Decathlon house now a commercial product, and are working with a ceramic tile manufacturer in Italy to do the same

7-3 High performance building envelopes for Smart net-zero resilient buildings

Dr Hua Ge, CZEBS, Concordia University, Canada

• For all new building envelope technologies, it is important to ensure the integrity of the building envelope, which can reduce 70% heating loads (Figure 7-3-1)

- Need durability. HAM analysis is important.
- Innovative insulation materials: VIP, VIM, aerogel, nano-insulation materials (NIM), PCM, Transparent Insulation materials (TIM)
- Advanced glazing/windows: VIG, evacuated aerogel glazing, PCM windows, TC, EC, PV integrated EC, SPD, gaschromic, dynamic IR coating, etc.

- Hygrothermal analysis done on CLT wood panels, and highly insulated wall assemblies.
- Durability analysis shows that durability risks tend to be reduced due to the increase of temperature, solar radiation
- BIPV/T +Attic, Ventilated v.s. unventilated
- Thermal bridging affect annual space heating load (Figure 7-3-2)
- A number of uncertainties in material properties, assumptions on air and water leakage, and modelling need to be examined to ensure that results are realistic.

7-4 Wind Energy Potential of Urban Areas

Dr Ted (Theodore) Stathopoulos, CZEBS, Concordia University, Canada

- Wind speed lower and turbulence higher in urban environments, need to maximize power output at low wind speed.
- Proper selection of turbine location will greatly impact performance, need to model the wind speeds over different areas of the roof.
- Need a method to determine wind speed at urban location from existing wind monitoring stations.
- Wind tunnel methodology tested against field monitoring and found to be in good agreement (within 5%) in homogenous terrain, but only within 30% for non-homogenous terrain.

7-5 Performance analysis of GSHP system in CABR nearly zero energy buildings (NZEB)

Dr Huai Li, Institute of Building Environment & Energy, China Academy of Building Research

- Two ground-source heat pumps, one for radiant floor (2nd) and radiant ceiling (3rd) and one for air based system on ground level.
- 79 boreholes with single U, double-U and spiral tubes.
- COP of radiant unit started at 5.4 at beginning of winter and went to 4.8 after three months, compared to 4.7 and 3.9 for COP of air based unit
- Over the entire year, soil temperatures were seen to recover in summer after winter such that temperatures at the beginning of winter remained similar.

Panel 8: Optimizing Building Operation, Storage and Grid Interaction

8-1 Heat Pump Water Heating Control Strategy Optimization

for Cold Climates

Dr Cynthia Cruickshank, Department of Mechanical and Aerospace Engineering, Carleton University, Canada

- Effective 2015 tanks larger than 55 US Gal will be required to use heat pump water heaters in US
- HPWH studied at CCHT found no significant change of total house energy use in winter as 1/3 DHW savings was counter balanced by 6% increase in space heating. Benefits found in summer.
- Used experimental setup to validate TRNSYS model and GenOPT to optimise design/control of 10 different parameters.
- HPWH cost effectiveness varies according to utility rates, and heating fuel type.

8-2 Energy storage will enable net-zero energy buildings to

become mainstream

Dr Lukas Swan, Department of Mechanical Engineering, Dalhousie University, Canada

- Posits that electricity storage required for mainstreaming of NZEB
- As penetration of PV increases, grid will no longer be able to cope with fluctuations in generation
- Proponent of electric storage as a buffer, but not to use the storage to lead to off-grid houses.
- Need to bring research groups together (storage, ZEB and smart grid)

8-3 Modelling and Design of Natural and Hybrid Ventilation Systems for High Performance Buildings

Dr Leon (Liangzhu) Wang, CZEBS, Concordia University, Canada

- Need systematic/integrated approach to consider natural ventilation in design. Tools for early stage concept and late stage, and for managers vs engineers
- Developed and presented early stage tool with simple inputs and outputs to evaluate the potential of natural ventilation.
- Detailed modelled developed to be validated with experimental work at Concordia EV building atrium

8-4 Advanced Control of Heat Pumps and the Impact on Building/Grid Interactions

Justin Tamasauskas, Natural Resources Canada, CanmetENERGY-Varennes

- Heat pumps provide link between thermal and electrical networks
- Evolution of buildings requires new approach to control (model predictive control)
- Predictive control tested with TRNSYS model coupled to MATLAB model.
- Predictive control allows the space heating energy consumption to be spread out over the day making it a good peak management tool.

Conclusion

After the 2-days Symposium, the four plenary speakers and from 3 to 5 speakers on eight different Panels discussing a range of topics from individual technologies, to communities and their interaction with the grid and policies, standards, incentives and education needed to accelerate the adoption of net-zero energy buildings. The plenary speakers and their topic areas tied all of the research together that was presented in the panels.

The highlight conclusions can be summarized as followed:

1. Decreasing carbon emission in building area is the world-wide trend in the future

2. NZEB and Low Energy building pilot demonstrations are covering all kinds of building types and more climate zones

3. Many economies have setting long-term goals on NZEB development, together with relative policies, standards, and incentive measures.

4. Education for Net-Zero Energy Building design and construction has been launched in many developed economies, such as Canada, the U.S.

5. Optimizing building operation monitoring is critical in further development

Economic Cooperation

Appendix V

Meeting notes of 2nd workshop

(Taichung City, Chinese Taipei)

APEC Workshop Nearly/Net Zero Energy Building --

From Best Practices to Mass Market

APEC Workshop Nearly/Net Zero Energy Building --From Best Practices to Mass Market Meeting Notes

2nd workshop of

APEC Nearly (Net) Zero Energy Building Best Practices and

Energy Reduction Comparative Study project

EWG 02 / 2015A

11th April 2016

The Splendor Hotel Taichung

Taichung City, Chinese Taipei

Nearly/Net Zero Energy Building -- From Best Practices to

Mass Market

Monday, April 11, 10.30-12.00 The Splendor Hotel Taichung, Taichung City, Chinese Taipei

Workshop organiser

Shicong Zhang

http://www.cabr.com.cn/

Goal of this workshop

- Enhance mutual understanding of economy's latest NZEB progress. e.g. How many pilot projects (best practices) are there and what is the growing trend? What kind of technologies were used? Is there any financial incentives or subsidies?
- Exchanging each economy's learning and experiences from the best practices. e.g. what is the energy consumption of the pilot projects compared with the average baseline? Did the pilot building runs as simulation? Did the advanced technology used in the building works as it should be?
- Discussion of the barriers and obstacles for the APEC NZEB best practices information collection, find the solution for the information collection in the next step.
- Discuss of how to enlarge the influence of best practices and move to mass-market.
- Discuss of the potential possibility to prepare APEC Nearly/Net Zero Energy Building Roadmap.

Presenter

Dr Bruno Lee Concordia Centre for Zero Energy Building Studies (CZEBS), Canada Dr Wei Feng Lawrence Berkeley National Laboratory, USA Dr WU Jianlin China Academy of Building Research, China Prof Dongwoo Cho Korea Institute of Civil Engineering and Building technology Prof Gyu young Yoon Nagoya City University, Japan Dr Usha Iyer-Raniga School of Property, Construction and Project Management, RMIT University Dr Ming-Shan Jeng Division Director of Intelligent Energy-Saving System in GEL/ITRI, Chinese Taipei Dr Margaret KAM

Construction Industry Council - Zero Carbon Building. Hong Kong, China

Workshop organiser

Date / Time	Session	Speaker
0800-0840		Workshop Registration
0840-0850		Welcome
0850-0900	APEC N	NZEB Program Introduction and overview
	SECTION I	Latest Progress and Overview
	Chair	: Dr Usha Iyer-Raniga
0900-1030	From residential to	Dr Bruno Lee
	commercial NZEB, best	NSERC Smart Net-zero Energy Buildings Strategic Research
	practices in Canada	(SNEBRN)
		Concordia Centre for Zero Energy Building Studies (CZEBS),
		Canada
	The Recent Development of	Dr Wei Feng
	Net Zero Energy Buildings in	Lawrence Berkeley National Laboratory, USA
	the United States	
	From Best Practice to Mass	Dr WU Jianlin
	Market : Latest Progress of	China Academy of Building Research, China
	NZEB in China	
	Policies and Best practices	Prof Dongwoo Cho
	toward nZEB in Korea	Head, Senior Research Fellow, Ph.D
		National Green Building Center
		Korea Institute of Civil Engineering and Building technology
1030-1045		Group Photo and Tea Break
		Best practices & Case Study
		r: Dr Margaret KAM
1045-1215	Policies and Best practices	Prof Gyu young Yoon
	toward nZEB in Japan	Nagoya City University, Japan
	Post occupancy evaluations	Dr Usha Iyer-Raniga
	of ZEB and ZCB in Australia	B. Arch., M.A.S.A., PhD
		Associate Professor
		Deputy Head, International
		Researcher, Sustainable Building Innovation Lab (SBiLab)
		School of Property, Construction and Project Management, RMIT University
	Zero Energy Building	Dr Ming-Shan Jeng
	Technology Alliance	Division Director of Intelligent Energy-Saving System in
	(ZEBTA) of Chinese Taipei	GEL/ITRI, Chinese Taipei
	Towards Zero Carbon:	Dr Margaret KAM, Assistant Manager - Technical Services,
	Experiences and Future	Construction Industry Council - Zero Carbon Building. Hong
	Directions of Hong Kong,	Kong, China
	it itong itong,	
	China's First Zero Carbon	

1215-1230

Discussion and Wrap-up

Key Points from Presentations

[Opening] APEC nearly(Net) Zero Energy Building Program

Zhang Shicong China Academy of Building Research

• **APEC Program Background** is introduced, and some results and achievements is presented with APEC members: APEC report has been downloaded 2546 times.

Figure 1

- **Objective of the program is summarized:** Exchanging information and experience, compare difference and similar; promote finding and outcomes, push market development and set up related association and alliances.
- **Progress of Best practices in China is shared,** including projects, best practices time schedules and finished workshops, attended meetings
- Next Step: 2nd meeting notes, Best Practices analysis and final program report, and New APEC proposal et, al.

01 From Residential to Commercial NZEB, Best Practices in Canada

Dr Bruno Lee

This presentation focus on Project introduction;

- **EcoTerraTM Equilibrium House**, passive technologies utilized in this project, PV panel, GSHP, high performance envelop and windows; shadings,
- Energy consumption in different sections are analyzed;
- Compare two study projects, one with BIPV and the other with BIPV/T. Thermal heating almost the same as solar electricity, challenges of implementing a BIPV/T system is to make effective use of energy from the heated air.
- Building Integration of PV is introduced;

Figure 2

- Development and Optimization of BIPV/T system is analyzed.
- Varennes NZEB Library design, Hybrid Vehicle, BIPV, light Shelves, Automated Operable Windows;

Figure 3

• Yearly Energy Consumption per Area is analyzed, energy production by PV

panel is about 87% of total energy consumption of this building;

This presentation described NZEB development in Canada by two projects, and passive technologies, renewable energy such as BIPV is introduced mainly, its performance in the projects, yearly energy consumption are shown and analyzed in detail.

02 Recent Development of Net Zero Energy Buildings in the U.S.

Wei Feng, Ph.D, Lawrence Berkeley National Laboratory

- New Policies and development of Net Zero Energy(NZE) buildings:
 - There are 3339 projects totally in U.S. large number projects become net zero or ultra low energy buildings (Commercial), ZNB use only 25% energy than average buildings in the U.S. Schools, public buildings, and office are common types;
 - Zero energy buildings definition: Zero Net Energy(ZNE) Buildings, Zero Energy Campus, Zero Energy portfolio, Zero Energy Community;
 - DOE Zero Energy Ready Home Webinars; on line trainings, 6 core values;
 - Passive Houses in the U.S. Re-evaluated German standards, and adaptions were developed;
 - Living Building Challenge, the first labeling program to certify net zero energy and water buildings, Certify actual measured performance, not just design performance.
 - California's Zero Net Energy plan update,

Two case studies

An Office Building in CA, net positive performance for a whole year, and measured energy consumption is lower than modeled one. Daylighting/skylight, co-exist with PV, Natural ventilation with ceiling fans; LED lighting;

An office building Colorado, technologies in use: Daylighting, skylight, co-exist with PV, natural ventilation with ceiling fans, LED lightings et.al. well insulated envelop, seal all gaps for air tightness;

• U.S. case collection

10 cases are shared, distributed in different positon of U.S., including Laboratories, interpretive center, higher education school, campus, Libraries. All these cases are net zero energy building.

Experience learned from cases in the U.S.: Comprehensive policies to support NZE development, and its development is still in early development, stages, Energy efficiency to reduce energy demand and make buildings net zero energy ready, most cases show that technologies are ready to develop net zero energy buildings, living energy data and dashboard to provide real-time performance feedback.

03 Best Practice of Net(Nearly) Energy Buildings(nZEBs) in China-From pilot to Mass Market

Jianlin Wu, Institute of Building Environment and Energy, China Academy of Building Research

> Background of NZEB development in China,

- **Changes** internationally, capping of carbon emission, challenge of building sector, indoor comfort;
- Pilot projects: More than 20 pilot projects in China, including residential houses, commercial buildings and schools around China;

Figure 6

CABR NZEB, with real-data evaluation, and it is the first nearly zero energy public building in China, the target energy consumption is 25kWh/(m²y), and two year operation data is 23kWh/(m²y). It is facilitating strong growth of NZEBs in China and laying foundation for future development of China's NZEB standard.

Pilot projects: office type dominated, 54.55%, residential 18.18%, &2.73% of the pilot projects lie in heating dominant region, 22.73% in heating and cooling balanced region.

- Sun shading, natural ventilation are dominated passive technologies and radiant heating and cooling are main active technologies utilized in pilot projects.
- Shandong, Hebei, Beijing and some other province local government has carried relative policies to promote development of ZEBs;
- Issuing of 《Technical guidance on Passive green residential house of China》 in November 2015;

住房城乡建设部文件	(名世史民))。進行支持背()、诸然合本地交穿。近於百敗非 完。
東井 [2015] 179 号	(点件主题会用) (点件主题会用)
佳房城乡建设部关于印发被动式 超低能耗绿色建筑技术导则 (试行)(居住建筑)的通知	
安、自治区位岸接乡镇臣厅, 直探市境委, 新疆土产建设其田	
第. 月 :	
大贤相求实党中央、国务技能还生态文明和新型线演变建 变	
我聪颖要。此一步投资建筑节期月禄包建筑党具水平。甚至分	
美国外被动式超低影響建筑的沿井站合我图工程实施的基	
上, 他帮制定了《被动式超优於拖增也建模技术学用 (低行)	生身成多度设置表金行報告托 2015年11月11日均定
-1-	-2-

Figure 7

- Mass market :China Passive Building Alliance is founded, more than 200 enterprises ,design firms form the alliance, it will provide technical and product support for NZEB design, construction commissioning and certification;
- > Target

04 Policies and Best Practices toward Nearly/Net Zero Energy Building in Korea

Dongwoo Cho, Senior Research Fellow, Korea Institute of Civil Engineering & Building Technology, Korea

• Policy of zero energy building in Korea

In this section, Policy of zero energy building in Korea is introduced generally,

- D Definition and Certification System of zero energy building;
- \mathcal{Q} . Policy for promotion of zero energy building;

③. Strategies for promotion of zero energy building;

- Low-rise pioneer zero energy building projects
- High-rise pioneer zero energy building projects
- Pioneer zero energy town
- ➢ 3 supportive measures to reduce additional construction cost

• 4 Best practices of zero energy buildings are introduced;

They are: Sampyeong Post Office, National Institute of Environmental Research, Seoul Energy Dream Center and Zero Carbon Green Home;

Figure9 Practices of nZEB in Korea

Summary

Policy of aero energy building, fist makes a clear definition of zero energy building that is the green building that is minimized building load and energy requirement by supply of new & renewable energy. Then from Policy, Strategy and Measures three aspects introduced promotion of zero energy building. Strategies for promotion of zero energy building's main mission are developing pioneer zero energy building projects with a new approach and creating from best practices to mass market, mainly including three parts: Low-rise, High-rise pioneer zero energy building projects and Pioneer zero energy town. As to Measures for promotion of zero energy building, 3 supportive measures are ongoing in order to reduce additional construction cost.

Next it takes Sampyeong Post Office, National Institute of Environmental Research, Seoul Energy Dream Center and Zero Carbon Green Home for examples, describes the part of best practices of zero energy building in detail.

Finally, considering the situation in this area, the power point points out the barriers, including Incremental cost for passive approach and renewable energy system, Relatively lower energy cost and so on, and points out how to promote nearly/net zero energy building development together.

05 Polices and Best Practices towards nZEB in Japan

Gyuyoung Yoon, Nagoya City University, Japan

Best practices

In this section, fashionable passive &active measures in nearly zero energy building in Japan is introduced. The measures are:

①fashionable passive measures: Natural ventilation, night purge; solar shading devices; daylight utilization; exhaust air and reuse; perimeter buffer system; others.

⁽²⁾ fashionable active measures: separate sensible & latent heat HVAC system; radiation H/C system lighting/HVAC system; task &ambient/HVAC system; LED lighting; fresh air volume control by CO2 concentration; large temperature difference water supply; high efficiency heat pump module chiller; ground heat source heat pump; desiccant HVAC system; tes, energy management,

visualization and others

Figure 10. Best practices on NZEB chart

• In addition, measures for system efficiency are applications of high performance equipment and high performance HVAC system; the most popular renewable sources in the cases were showing is PV.

• Challenges to promote NZEB

Some barriers in development of NZEB in Japan is still ahead, works and challengers to promote NZEB is

- 1. Definition of NZEB need to be clearly identified from narrow and broad sense.
- 2. Lack of design know-how: no established design procedures for integrating of each energy saving measures; sharing of know-how is difficult, because of diversity of NZEB design; not enough of case study for estimation of cost performances of NZEB design.
- 3. Additional cost become a burden of owners; gap of benefit caused by NZEB between owners and tenants.

• Summary

This presentation discusses Polices and Best Practices towards nZEB in Japan. Firstly, It introduces contents of best practices and best practices on NZEB chart. Then the writer gives some details about fashionable passive & active measures, such as fashionable passive measures including natural ventilation, night purge and solar shading devices, etc. and fashionable active measures including separate sensible & latent heat HVAC system, radiation H/C system lighting/HVAC system etc. As summary, it shows some technology outlines about NZEB. Secondly, the writer pays attention to the Challenges to promote NZEB. There are many difficulties to promote NZEB, such as lack of design know-how. There are no established design procedures for integrating of each energy saving measures, so sharing of know-how is difficult because of diversity of NZEB design and there are not enough of case study for estimation of cost performances of NZEB design. But the attractive of NZEB is promising.

06 Zero energy and post occupancy evaluation

Associate Professor Usha Iyer-Raniga, School of Property, Construction and project Management

• Definitions of nearly zero energy building is introduced from different viewpoints.

- Zero/Net Zero
- Energy: net zero sources energy building; net zero site energy building.
- Cost: net zero energy cost.
- Emissions: net zero energy emissions.
- > Comparison between Australia and other countries is introduced.

Instruction of development in Australia.

- Australia's targets: ①Goal is to reduce emissions to 26-28% on2005 levels by 2030.②
 Abatement task estimated at 1.3 billion tones in 2008, has now reduced to 236 million tones on emission reductions.
- How does Australia fare compared to other countries?; AUSTRALIA is responsible for 1.3% of global emissions.
- ➢ How can Australia achieve its targets?
- Australian context of energy use in buildings: ① Energy use of buildings contributes to 20% of national greenhouse gas emissions; ② Heating and cooling 11% of national greenhouse gas emissions; ③ Typically: Space heating and cooling: 41% and Domestic water heating: 30%.
- ➢ Life cycle energy

• Case study:

Lochiel Park & Josh's House

Case Study of POE

- Benefits and challenges of POE
- Hong Kong, China: To generate understanding of thermal comfort, air cleanliness and noise towards occupants' performance. India: Investigation on sensation and preferences for other environmental parameters of occupants.
- > The urban learning lab, Learning from SAB
 - Research Aim: The aim was to understand the challenges, opportunities and lessons learned from the process of building a best practice green building at an Australian university.
 - Methodology: The case study was undertaken using a mixed method approach.
 - Findings
 - Conclusion and Challenges

Summary

This presentation is made by RMIT, Professor Usha Iyer-Raniga. The main topic is "zero energy and post occupancy evaluation". First, it gives some Definitions. And then it starts to introduce situation in Austria, such as Australia's targets, how Australia fares compared to other countries

and so on. It describes the cases of Lochia Park and Josh's House in the form of a chart. Next is to introduce another important content that is post occupancy evaluation (POF), including definitions, benefits, challenges and barriers of POE. Then it take POE in Hong Kong, China and Indian for examples, Third main part of this PowerPoint are explain the background of why they should pay attention to Zero energy and post occupancy evaluation .They also bring forward their Research Aim and Methodology. Finally, they come to some conclusion and challenges.

07 Zero Energy Building Technology Alliance (ZEBTA) of Chinese Taipei

Dr Ming-Shan Jeng, Green Energy & Environment Research Laboratories, Industrial Technology Research Institute

• Zero Energy Building Technology Alliance (ZEBTA) of Chinese Taipei

Zero Energy Building Technology Alliance: ①In 2011, MOEA and ITRI co-launched the ZEBTA (Zero Energy Building Technology Alliance);② More than 100 leading companies joined the alliance.

- Scope of Member Companies: ①design and structure; ②energy saving; ③renewable energy; ④intelligent energy & control.
- ZEBTA's Missions and Activities: ①raising public awareness of zero energy building;
 ②platform for information exchange and networking; ③ZEB technology advancement.
- A ZEB example the Cafeteria in ITRI Central Campus
 - Project Overview: located in Nantou; Cafeteria total area: 792.65 m², Conditioned area: 704.34 m2 (dining room + kitchen), Gross roof area: 804.33m²
 - Technologies Used in the Underground Geo-Cooling Project: ①High performance design; ②Natural Ventilation; ③underground Geo-cooling;④ Zonal Air-conditioning; ⑤High Efficiency Lighting.
 - Achieving Net-Zero: Saving up to 52% comparing to the baseline design was realized;
 45.57kWp PV is enough to cover overall annual energy consumption.
- **Conclusions:** ①A test-bed of ZEB for ITRI and industrial partners from ZEBTA was realized in the zero-energy cafeteria project; ②Through the integration of active and passive approaches, 52% of the baseline energy consumption was conserved and the rest was fully covered by PV to accomplish the goal of net-zero energy; ③US \$27.4 thousand is the engineering cost for enhancing energy savings in this project and ROI is 11.4 years based on the electricity fee of Chinese Taipei with ongoing verification of measurement; ④Even though all the individual technologies have been seen before, the innovation in this project is how they are seamlessly integrated at competitive cost; ⑤Long term and clear policy is needed to drive the adoption of NZEB in Chinese Taipei; ⑥More international collaborations is necessary for promoting and testing of various "best practices" in different

climate zone.

• Summary

ZEBTA was co-launched by MOEA and ITRI together in 2011. More than 100 leading companies joined the alliance, in an effort to boost ZEB technology development and create new business opportunities. Member companies' scope includes design & structure, energy saving, renewable energy and intelligent management &control. ZEBTA's Missions and Activities consist of raising public awareness of Zero Energy Building, Platform for information exchange and networking and ZEB technology Advancement. The typical case is the Cafeteria in ITRI Central Campus, it locates in Nantou, Cafeteria total area: 792.65 m2, Conditioned area: 704.34 m2 and Gross roof area: 804.33 m2. Technologies such as High Performance Design, Natural Ventilation,

Underground Geo-cooling, Zonal Air-conditioning, High Efficiency Lighting are used in this building. The good news is that the building Saves up to 52% comparing to the baseline design was realized and 45.57kWp PV is enough to cover overall annual energy.

From this success case, many conclusions can be got, such as A test-bed of ZEB for ITRI and industrial partners from ZEBTA was realized in the zero-energy cafeteria project, through the integration of active and passive approaches, 52% of the baseline energy consumption was conserved and the rest was fully covered by PV to accomplish the goal of net-zero energy and so on. However, long term and clear policy is needed to drive the adoption of NZEB in Chinese Taipei and More international collaborations is necessary for promoting and testing of various "best practices" in different climate zone.

08 Towards Zero Carbon – Experiences and Future Directions for Hong Kong, China's First Zero Carbon Building

Dr Margaret Kam, Construction Industry Council

• Hong Kong, China's Carbon Reduction Target

 Φ Hong Kong, China's government aims to reduce carbon intensity by 50-60% by 2020 as

compared with 2005 level

² Potential measures to realize the target are introduced.

HongKong's First Zero Carbon Building is introduced.

Figure11 HongKong's First Zero Carbon Building

Design Measures: Orientation for solar access; ventilation and daylighting; High performance glazing and external fins for solar control and shading; Sustainable site design; Open plan for cross ventilation; Orientation and façade design to maximize natural daylighting; Light shelves to optimize daylighting.

 Landscaping, Low Carbon Materials, Active Systems, Renewable Energy Generation measures are introduced.

ØOverall Strategy

Energy Usage and Data Collection: Over 2800 sensors and Building Management System for monitoring and data collection for evaluating building performance

```
Real Time Performance Display: through the Building Environmental Performance Assessment Dashboard
```

Real operation data of energy consumption in year 2013,2014 and 2015 are introduce and compared by month and sections, and performance gaps attributed to: Increased building Usage; Energy consumed outside of normal working hours; Energy consumption related to nonessential services. Carbon footprint is also analyzed.

Figure12 Yearly energy consumption of zero carbon building

Challenges to Achieving Zero Carbon: Differences in designed and actual operational and

commercial use; extended testing and commissioning; balancing zero energy with occupant behavior, comfort, control and satisfaction; Facilities management practices

Summary

This PowerPoint describes Hong Kong, China's First Zero Carbon Building' (ZCB) situation in detail. From Hong Kong, China's Carbon Reduction Target to ZCB's Carbon, Energy Strategy. Next, it introduces passive design measures used in the construction process. Apart from these, some other advanced technologies that has been adopt also has a clear presentation.

In the end, it answers the questions "What are the gaps that hide the flourish of ZCB" and "how to Transition to Mass Market".

Conclusion and future work directions in the field

Looking back on the course of development of Net Zero Energy building, many economies have achieved great progress on NZEB definition and mass market expansion:

1. **NZEB definition.** Economies like Japan, Korea, and United States, have developed specific definitions on residential buildings and public buildings. United States classified the NZEB definition according to its boundary: Zero Net Energy(ZNE) Buildings, Zero Energy Campus, Zero Energy portfolio, Zero Energy Community; Korea have developed a complete set of definition and certification system of zero energy building; Japan Australia

2. **NZEB best practices.** From 2011 to 2015, the number of NZEB best practices has increased exponentially. There are already more than 20 pilot projects in china, including residential houses, school buildings, and commercial buildings. Energy consumption is still the most important indicator. For Canada, renewable energy such as BIPV is a main adoption during the pilot practices; Fashionable passive and active measures are becoming the focus.

3. **NZEB alliances.** The NZEB alliances have been founded in many economies, including United States, Canada, Japan, Korea, People's Republic of China, Hong Kong, China, Chinese Taipei and so on. These alliances are playing more and more important roles in promoting NZEB to mass market.

4. **Promoting barriers.** Demonstration of NZEB energy consumption is the most important and meanwhile a very complicated thing after the construction stage is completed. Lacking of operating data is the first barrier for APEC regions; Meanwhile Incremental cost for passive approach and renewable energy system is also a barrier that cannot be neglected.

5. **Next step.** For the first, the public awareness should be strengthened that building energy saving by NZEB will is reliable; Second, codes and standards for NZEB design, construction, and operation are needed desperately; And sharing of the newest NZEB development information is also what we should do next, thus to strengthen the capacity construction, to fulfil the mass market step by step.

Acknowledgement

I would like to express my deepest appreciation to ITRI, who provides great support to our workshop. The thoughtful site arrangement is the important precondition for this workshop. I should also show special appreciation to Tony Zhang, who have done a lot of preparation for contact and other details.

