

Asia-Pacific Economic Cooperation

Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region

APEC 21st Century Renewable Energy Development Initiative (Collaborative IX)

Thailand Institute of Scientific and Technological Research กระทรวงพลังงาน MINISTRY OF ENERGY

ureau of Energy Inistry of Economic Atteirs

April 2009

Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region (EWG 02/2007A)

APEC 21st Century Renewable Energy Development Initiative (Collaborative IX)

April 2009

APEC Project

Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region

Produced By

Peesamai Jenvanitpanjakul Thailand Institute of Scientific and Technological Research (TISTR) 35 Mu 3, Technopolis, Khlong 5, Khlong Luang, Pathum Thani 12120, Thailand

Design and layout by

Chanchira Sinoulchan Chutima Manothum Rewat Wiboolsirichai

CD design and layout by

Chana Prechamandikul Katsirin Hanchanaphan

for APEC Secretariat 35 Heng Mui Keng Terrae Singapore 119616 Tel: (65) 68919 600 Fax: (65) 68919 690 Email: <u>info@apec.org</u> Website: <u>www.apec.org</u>

© 2009 APEC Secretariat

ISBN: 978-981-08-3179-0 [APEC#209-RE-03.1]

FOREWORD

While the global community is abuzz about energy and environment concerns from the crisis of climate change arising from the increasing of millions of vehicles and the surging of oil prices, many countries have taken actions in order to solve these problems by gearing towards more sustainable energy with positive impacts on the environment. Among the options, biodiesel has been identified as an option that can play a significant role in reducing consumption of imported petroleum and for environment benefits.

Considering the substantial increase of biodiesel production in the APEC region, biodiesel standards, which are slightly different in different parts of the world, have become an important topic for discussion in international markets.

This report was prepared as a product of a joint partnership of Australia, New Zealand, Chinese Taipei, the US, and Thailand and funded by the APEC Central Fund in an attempt to provide a revision of current biodiesel standards, potential feedstock, biodiesel application, lesson learned on the engines, vehicles and emission, related works on biodiesel fuel standards, as well as opportunities, gaps, and barriers. It is hoped that the information gained from the key eminent experts presented in this report will be a valuable contribution to development of the guideline for biodiesel production standards in the APEC region and help addressing market barriers and restore consumer confidence in the biodiesel industry among the APEC economies.

I wish to express my sincere appreciation to the APEC Secretariat for the support and proper guidance in financial and project implementing matters. Our special thanks are due to Dr. Cary Bloyd, Chairman of APEC Expert Group on New and Renewable Energy Technology (EGNRET). We owed a special debt of gratitude for his critical advice from his profound knowledge associated with the on-going work in the APEC biofuels projects. To Dr. Hom Ti Lee, Senior Researcher, Energy & Environment Research Labs, Industrial Technology Research Institute (ITRI), Chinese Taipei and his staff for cooperating and hosting the 2nd workshop on biodiesel standards development in Taipei. We are grateful to all participants attending in both workshops for sharing their valuable information, which contributes beautifully to this report.

Ms. Peesamai Jenvanitpanjakul

Deputy Governor (Research and Development for Sustainable Development) Thailand Institute of Scientific and Technological Research (TISTR)

EXECUTIVE SUMMARY

Nowadays, oil price, the shortage of fossil fuel, and environmental problems are critical issues that are of concern to the global and domestic communities. While emissions from fossil fuel damages our environment and generates greenhouse effects, biodiesel is considered as clean and renewable energy. It is produced from vegetable oils; animal fats or recycled cooking grease. In pure form or blended biodiesel with petroleum diesel can be used as a transport fuel with suitable diesel engines. This means it can reduce fossil fuel consumption and emissions, so biodiesel has gained much attention by many countries. Biodiesel quality and standard are promoted accordingly for sustainable development.

The project on "Establishment of the guidelines for the development of biodiesel standards in the APEC region" was an effort of Thailand in close collaboration with Australia, New Zealand, Chinese Taipei, and the US as the project partners to promote neutral standards of biodiesel produced in the APEC region. It was initiated to support the Message from the APEC Energy Minister's Meeting in Republic of Korea in October 2005, which stressed the needs to respond to the impact of high oil prices and oil dependency.

Biodiesel standards in the APEC region are mostly based on European (EN 14214) and US (ASTM D 6751) standards. However, some parameters in these standards do not cover some of APEC feedstocks. The EN 14214 is based on biodiesel produced from rapeseed and combination of oils that together provide similar characteristics to rapeseed oil, including sunflower and soybean oil, while the US biodiesel standard was developed to address biodiesel produced predominantly from soybean and waste cooking oils.

The purpose of this project is thus to provide useful information for the establishment of the guidelines for the development of biodiesel standards in the APEC region. The report will also build overall capacity to expand the knowledge and awareness of APEC economies

IV

and enhance the trade of biodiesel among APEC member economies in order to offer the possibility for a sustainable energy source with a neutral effect on greenhouse gas emission.

This report firstly presents information on the project background and activities. Then, the current status of biodiesel standards including US ASTM (D 6751), European biodiesel standard (EN 14214), are reviewed to provide an overview on how these standards are being referenced in the international markets, particularly in the APEC economies. The report also reviews biodiesel potential feedstocks in terms of their natural characteristics and lesson learned on the impact of biodiesel on the diesel engines and vehicle as well as their emissions. Related works on biodiesel fuel standard are also presented. Final section of the report presents the result of the workshops on the opportunities, gaps, barriers and lessons learned from using biodiesel as fuels with engine and automobile manufacturers in order to adopt biodiesel specification and its blends.

TABLE OF CONTENTS

Foreword		Ι
Executive su	ımmary	III
Table of con	tents	V
List of figure	es	VI
List of tables	5	VII
Acronyms .		IX
1. Introduct	ion	1
1.1	Background	1
1.2	Project activities	2
2. Current b	iodiesel standards	5
3. Potential	feedstocks	9
4. Lesson lea	arned on the engines, vehicles and emission	17
5. Necessary	v additives	23
6. Related w	orks on biodiesel fuel standards	31
6.1	Internationally compatible biodiesel standards:	
	Tripartite task force	31
6.2	ERIA project: Working group for "Benchmarking	
	of biodiesel fuel standardization for vehicles in East	
	Asia"	32
6.3	World wide fuel charter (WWFC)	34
6.4	ISO/TC 28	38
6.5	Roundtable on sustainable biofuels (RSB)	38
7. Opportun	ities, gaps, barriers and lesson learned	41
8. Conclusio	ons	45
9. Reference	s	47
10. Appendi	ices: Participants list	53
10.1	Appendix A1 : The 1 st APEC Workshop,	
	25-26 October 2007, Bangkok	53
10.2	Appendix A2 : The 2 nd APEC Workshop,	
	16-17 July 2008, Chinese Taipei	61

V

LIST OF FIGURES

Figure 1	Transesterification reaction	1
Figure 2	The APEC Workshops	3
Figure 3	The world palm oil production in 2006/2007	12
Figure 4	Fatty acid profile of various biodiesel feedstocks	24

VI

LIST OF TABLES

Table 1	The comparison of biodiesel specification of EU, US,	
	APEC and non-APEC economies	6
Table 2	World oilseeds production in 2006/2007	9
Table 3	Potential feedstock for biodiesel production in each	
	country	10
Table 4	Fatty acid composition of vegetable oils	11
Table 5	Biodiesel characteristics of various feedstock	13
Table 6	List of algal fuel producers	16
Table 7	Lesson learned from the use of biodiesel on the	
	engine and vehicle	19
Table 8	The effect of antioxidant additives on oxidation	
	stability of biodiesel from various oils	26
Table 9	EAS-ERIA biodiesel fuel benchmark standard: 2008	33
Table 10	WWFC guidelines for B100 blendstock for using in	
	B5 blends	34
Table 11	The comparison of US, EU, ERIA and WWFC	
	biodiesel specification	37
Table 12	Barriers, needs, and lesson learned of the use of	
	biodiesel on the engine and the emissions	41

ACRONYMS

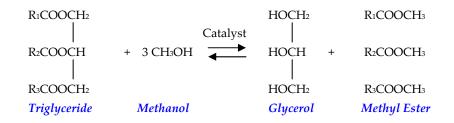
ABNT	Associacao Brasileira de Normas Tecninas (Brazilian
	Standards)
ACEA	European Automobile Manufacturers Association
APCC	Asian and Pacific Coconut Community
APEC	Asia-Pacific Economic Cooperation
ASEAN	The Association of Southeast Asian Nations
ASTM	American Society for Testing and Materials
BAYNOX	20% 2,6-di- tert-butyl-4-methylphenol (Brand of Bayer
	AG, Leverkusen, Germany)
Baynox plus	Brand of Lanxess Deutschland GmbH
BDF	Biodiesel Fuel
BF320	Brand of Kemin
BHA	3-tert-Butyl-4-hydroxyanisole
BHT	2,6-Di-tert-butyl-4-methyl-phenol
BioExtend 30 HP	Brand of Eastman Chemical Deutschland GmbH
BioStable ™ 403E	Brand of Innospec Ltd.
BQ9000	Quality Management System of biodiesel
BTL	Biomass to Liquid
Bxxx	Biodiesel where XXX is the percentage of biodiesel in
	the blend
CA	California
CEN	European Committee for Standardization
CFPP	Cold Filter Plugging Point
Chimec CH 4636	Brand of Chimec SpA
Chimec R 876 HFP	Brand of Chimec SpA
CME	Coconut Methyl Ester
CNS	Chinese National Standards
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
Cont.	Continue
Corp.	Corporation
cSt	CentiStoke
DIESOLIFT BD-3	Brand of International Fuel Technology
DRCOME	Distilled Recycled Cooking Oil Methyl Ester
DTBHQ	2,5-Di- tert-butyl-hydroquinone (Brand of AECI-Aroma
~	and Fine Chemicals_Richards Bay, South Africa)
EAS	East Asia Summit
EGNRET	Expert Group on New and Renewable Energy
	Technology

ACRONYMS_(Cont.)

EMA	Engine Manufacturers Association
EN	European Biodiesel Standard
ERIA	Economic Research Institute for ASEAN and EAST Asia
EU	European Union
EWG	Energy Working Group
FA	Fatty Acid
FAME	Fatty Acid Methyl Esters
FAEE	Fatty Acid Ethyl Esters
g/ml	gram per mililitre
GB/T	Guobiao/tuiji (National Standards of the People's
	Republic of China/Recommended)
HC	Hydrocarbon
HDRD	Hydrogenation-derived Renewable Diesel
Inc.	Incorporation
IONOL BF200	Brand of Raschig GmbH
Ionox 220	4,4'- methylene-bis-(2,6-di-tert-butylphenol) (Brand of
	Degussa Sant Celoni, S.A., Spain)
IRGASTAB BD 100	Brand of Ciba Corporation
IRGASTAB BD 50	Brand of Ciba Corporation
ISO	International Organization for Standardization
ISO/TC 28	International Organization for Standardization:
	Technical Committee 28
ITRI	Industrial Technology Research Institute (Chinese
	Taipei)
JAMA	Japan Automobile Manufacturers Association, Inc.
JASO	Japanese Automotive Standards Organization
JIS	Japanese Industrial Standards
JWG	Joint Working group
Kerobit 3627	Brand of BASF SE
Kerobit TP 26	2,6-di-tert-butylphenol (Brand of BASF SE)
kg	kilogram
kg/m ³	kilogram per cubic meter
km	kilometer
max	maximum
mg KOH/g	milligrams of Potassium Hydroxide per gram
mg/kg	milligram per kilogram
min	minimum

ACRONYMS_(Cont.)

mm²/ml	square millimeter per milliliter					
mm²/s	square millimeter per second					
NOx	Nitrogen Oxides					
°C	Degree Celcius					
OEM	Original Equipment Manufacturer					
PG	n-Propyl gallate					
PME	Palm Methyl Ester					
PNS	Philippine National Standard					
ppm	parts per million					
PY	Pyrogallol					
R120	Brand of Infineum UK Ltd					
R130	Brand of Infineum UK Ltd					
RCOME	Recycled Cooking Oil Methyl Ester					
RME	Rapeseed Methyl Ester					
RSB	Roundtable on Sustainable Biofuels					
SBME	Soybean Methyl Ester					
SME	Sunflower Methyl Ester					
SNI	Standar National Indonesia (Indonesia National					
	Standard)					
TBHQ	tert Butyl hydroquinone					
TC	Technical Committee					
TISTR	Thailand Institute of Scientific and Technological					
	Research					
UFO	Used Frying Oil					
ULSD	Ultra Low Sulfur Diesel					
US	United States of America					
USDA	United States Department of Agriculture					
Vulkanox BKF	2,2'-methylene-bis-(4-methyl-6-tert-butylphenol)					
	(Brand of Bayer AG, Leverkusen, Germany)					
Vulkanox ZKF	2,2'-methylene-bis-(4-methyl-6-cyclohexylphenol)					
	(Brand of Bayer AG, Leverkusen, Germany)					
WG	Working Group					
WWFC	World Wide Fuel Charter					
%vol	Percent by volume					
%wt	Percent by weight					
70 VV L	i cicciii by weigin					



1. INTRODUCTION

Background

World populations continue to increase every year means that the world energy demand continues to increase in the same way. Most energy resources are non-renewable energy e.g. petroleum. Nowadays, oil price, the shortage of fossil fuel, and environmental problems are the global issues that have been widely concerned. Biodiesel, as a source of renewable energy, is an attractive option to solve this crisis for many countries to improve energy security supply and reduces the impacts of oil dependency.

Biodiesel can be produced from various kinds of vegetable oils and animal fats. Straight oil, however, can not be used directly as fuel in conventional diesel engine. It has to be chemically converted to biodiesel through transesterification reaction. In the transesterification or conventional biodiesel process, the oils are reacted with the methanol in the presence of sodium hydroxide or potassium hydroxide as catalyst as reaction shown in Figure 1.

Figure 1. Transesterification reaction

Current biodiesel is produced based upon differential standard. European standard (EN 14214) and US standard (ASTM D 6751) are widely used as reference standards. The EN 14214 is based on biodiesel produced from rapeseed and combination of oils that together provide similar characteristics to rapeseed oil, while the US ASTM D 6751 biodiesel standard was developed to address biodiesel produced predominantly from soybean and waste cooking oils. The quality of biodiesel produced depends on several factors such as climate, feedstock, and vehicle type. The difference in those factors may require slightly different biodiesel specification to fulfill market acceptance.

The project on "Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region" was an effort of Thailand in close collaboration with Australia, New Zealand, Chinese Taipei, and the US as the project partners to promote neutral standards of biodiesel produced in the APEC region. It was initiated to support the Message from the APEC Energy Minister's Meeting in Republic of Korea in October 2005, which stressed the need to respond to the impact of high oil price and oil dependency. The main purpose of this project was to build up the capacity to expand the knowledge and awareness of APEC economies in the establishment of the guidelines for development of biodiesel standards.

Project Activities

Hart Energy Consulting was selected to prepare a position paper for the project. It covered the current biodiesel standards, potential feedstocks, lessons learned on the affects of biodiesel on diesel engines and the investigation of the additives necessary for biodiesel. The study report can be accessed at:

www.apec.org/apec/publications/all_publications/energy_work
ing_group.html

The implementation of the two related workshops have been an integral part of the project. Two workshops brought together representatives from energy sector among APEC economies including key eminent experts and stakeholders from governmental agencies, petroleum companies, automakers, biodiesel producers, and environmental protection officers. Participants of the two workshops were listed in Appendix A.

1. Introduction

The two workshops were designed to review the current status of biodiesel standards applied in both of the APEC economies and non-APEC economies as well as potential feedstock and evaluate their natural characteristics that may affect the quality of biodiesel. Many issues were raised in the presentations from the participating speakers and the roundtable discussion. It also investigated the opportunities, gaps, barriers and lesson learnt from using biodiesel as sustainable energy source in the APEC region.

The two workshops were held as follows:

- The 1st APEC workshop was held on 25 26 October 2007 in Thailand with 90 participants from 15 APEC and non-APEC Economies.
- The 2nd APEC workshop was held on 16 17 July 2008 in Chinese Taipei with 76 participants from 11 APEC and non-APEC Economies.

The pictures from the APEC workshops are shown in Figure 2:

Figure 2. The APEC Workshops

2. CURRENT BIODIESEL STANDARDS

The Biodiesel Standards in the APEC region are mostly referenced by EN 14214 and US ASTM (D-6751). European biodiesel specification (EN 14214) is an international standard for biodiesel, which was approved by CEN (European Committee for Standardization). It was set up to control biodiesel quality within the EU and has been used as a guideline for many countries. This standard is mostly based on biodiesel produced from rapeseed and combination of oils that together provides similar characteristics to rapeseed oil. ASTM D-6751 is the standard that covers pure biodiesel (B100), for blending level up to 20% by volume in the US. It was setting up by the American Society for Testing and Materials (ASTM), which is a standard development organization. As this standard was designed for neutral process and feedstock such as soybean that different from EN 14214 specification, some properties of ASTM D-6751 are slightly different from the European specification.

However, feedstock for biodiesel production in European countries (rapeseed oil) and US (soybean oil, used cooking oil) are completely different from those used in the APEC economies (palm oil, jathopha oil, coconut oil). Considerable efforts are being devoted to set up standards and harmonization for biodiesel production in APEC. For better understanding of all issues involved, the current status of biodiesel and biodiesel specification in both APEC economies and non-APEC Economies such as India were reviewed.

The Biodiesel specification of EU, US, APEC and non-APEC economies show in Table 1.

Items	EU1/	US ^{1/}	China ^{1/}	Chinese Taipei ^{2/}	Indonesia ^{3/}	Japan ^{4/}	Korea ^{5/}	Philippines ^{6/}	Malaysia ^{7/}	Thailand ^{8/}	India ^{9/}
	EN 14214: 2003	ASTM D6751- 07b	GB/T 20828- 2007	CNS 15072	SNI 04-7182- 2006	JASO M360	Fuel Spec (B100)	DPNS/DOE QS 002:2007	Spec of Palm Methyl Esters	B100- FAME	IS 15607:2005
Methyl ester content (wt%)	>96.5	-	-	>96.5	>96.5	>96.5	>96.5	-	>96.5	>96.5	>96.5
Density at 15°C (kg/m ³)	860-900	-	820-900 (20°C)	860-900	850-890 (40°C)	860-900	860-900	860-900	860-900	860-900	860-900
Viscosity at 40°C (cSt)	3.5-5.0	1.9-6.0	1.9-6.0 (20ºC)	3.5-5.0	2.3-6.0	3.5-5.0	1.9-5.0	2.0-4.5	3.5-5.0	3.5-5.0	2.5-6.0
Flash point (°C)	>120	>93	>130	120	>100	>120	>120	>100	>120	>120	120
Sulfur content (ppm)	<10	<15	<50	<10	<100	<10	<10	<0.05	<10	<10	<0.005
Carbon residue on 100% distillation residue (wt%)	-	<0.05	-	-	<0.05	-	-	<0.05	<0.05	-	<0.05
Cetane number	>51	>47	>49	>51	>51	>51	-	>51	>51	>51	>51
Sulfated ash (wt%)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	<0.02	<0.02

Table 1. The comparison of biodiesel specification of EU, US, APEC and non-APEC economies

2.	Current	Biodiesel	Standard

Table 1. (Cont.)

Items	EU ^{1/}	US ^{1/}	China ^{1/}	Chinese Taipei ^{2/}	Indonesia ^{3/}	Japan ^{4/}	Korea ^{5/}	Philippines ^{6/}	Malaysia ^{7/}	Thailand ^{8/}	India ^{9/}
	EN 14214: 2003	ASTM D6751- 07b	GB/T 20828- 2007	CNS 15072	SNI 04-7182- 2006	JASO M360	Fuel spec (B100)	DPNS/DOE QS 002:2007	Spec of Palm methyl esters	B100- FAME	IS 15607:2005
Water and sediment, (vol%)	-	<0.05	-	-	<0.05	-	<0.05	<0.05	<0.05	-	-
Total contamination (ppm)	<24	-	-	<24	-	<24	-	-	<24	<24	<24
Copper corrosion 3 hours at 50°C (rating)	Class 1	No. 3	Class 1	No.1	Class 3	Class 1	Class 1	No. 1	Class 1	No.1	Class 1
Oxidation stability at 110°C (hours)	>6	>3	>6	>6	-	By mutual agreement	>6	>6	>6	>6	>6
Acid value (mg KOH/g)	<0.5	<0.5	<0.8	<0.5	<0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Iodine value (g Iodine/100 g)	<120	-	-	<120	<115	<120	-	-	<110	<120	Report
Methyl linolenate (wt%)	<12	-	-	<12	-	<12	-	-	<12	<12	-

Table 1. (Cont.)

Items	EU ^{1/}	US ^{1/}	China ^{1/}	Chinese Taipei ^{2/}	Indonesia ^{3/}	Japan ^{4/}	Korea ^{5/}	Philippines ^{6/}	Malaysia ^{7/}	Thailand ^{8/}	India ^{9/}
	EN 14214: 2003	ASTM D6751- 07b	GB/T 20828- 2007	CNS 15072	SNI 04-7182- 2006	JASO M360	Fuel spec (B100)	DPNS/DOE QS 002:2007	Spec of Palm methyl esters	B100- FAME	IS 15607:2005
Methanol content (wt%)	<0.2	<0.2 (*)	-	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Monoglyceride content (wt%)	<0.8	-	-	<0.8	-	<0.8	-	<0.8	<0.8	<0.8	-
Diglyceride content (wt%)	<0.2	-	-	<0.2	-	<0.2	-	<0.2	<0.2	<0.2	-
Triglyceride content (wt%)	<0.2	-	-	<0.2	-	<0.2	-	<0.2	<0.2	<0.2	-
Free glycerol content (wt%)	< 0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	-	<0.02	<0.02	<0.02	< 0.02
Total glycerol content (wt%)	<0.25	<0.24	<0.24	<0.25	<0.24	<0.25	<0.25	<0.24	<0.25	<0.25	<0.25
Alkali, Na+K (ppm)	<5	<5	-	<5	-	<5	<5	<5	<5	<5	Report
Metals, Ca+Mg (ppm)	<5	<5	-	<5	-	<5	<5	<5	<5	<5	Report
Phosphorous content (ppm)	<10	<10	-	<10	<10	<10	<10	<10	<10	<10	<10

(*) 130°C of flashpoint is available instead of measuring methanol content

3. POTENTIAL FEEDSTOCKS

Biodiesel can be produced from various feedstock such as vegetable oils and animal fats. Each country uses different feedstock depending on their availability and cost. As biodiesel properties depend on the natural characteristic of the feedstock used as raw materials, biodiesel from different countries have different characteristics accordingly. The world oilseeds production in 2006/2007 shows in Table 2.

	Unit : million metric tons							
Country	Oilseed							
	Soy	Rape	Sun	Peanut	Palm	Copra	Palm	
	bean	seed	flower		Kernel			
US	87.00		0.97	1.57				
Brazil	59.00							
Argentina	48.80		3.50					
China	15.97		1.50	12.89				
India	7.69	5.80	1.29	5.39				
Canada	3.46	9.00						
Germany		5.34						
France		4.12	1.39					
UK		1.89						
Poland		1.65						
Russian			6.75					
Ukraine			5.30					
Philippines						2.20		
Indonesia				1.20	4.45	1.44	16.60	
Malaysia					3.94		15.29	
Thailand							1.17	
Others	15.63	17.36	9.11	9.62	1.80	1.62	4.29	
World production	237.55	45.16	29.81	30.67	10.19	5.26	37.35	

Table 2. World oilseeds production in 2006/2007

Source: http://www.fas.usda.gov/wap/circular/2009/09-01/productionfull01-09.pdf^{10/}

Table 3 shows the current potential feedstock for biodiesel production in each country.

Table 3. Potential feedstock for biodiesel production in each country

Country	Potential Feedstock for biodiesel production
Europe	Rapeseed oil, sunflower oil, soybean oil
Australia	Tallow, used cooking oil
Canada	Yellow grease and tallow, canola, mustard, flax, soybean oil
China	Rapeseed oil, used cooking oil, jatropha oil
Chinese Taipei	Used cooking oil, soybean oil, sunflower oil
India	Jatropha oil, rapeseed oil
Japan	Used cooking oil
Indonesia	Palm oil, jatropha oil
Korea	Soybean oil, used cooking oil, palm oil
Philippines	Coconut oil, jatropha oil
Malaysia	Palm oil
New Zealand	Used cooking oil, tallow
Singapore	Palm oil
Thailand	Palm oil, used cooking oil, jatropha oil
US	Soybean oil, sunflower oil, tallow and yellow grease

Biodiesel's quality depends on type of feedstock and their fatty acid composition. Carbon chain length and double bonds of oils affect the oils characteristic such as liquid/solid status of oil in room temperature. Fatty acid compositions of vegetable oils from various types of feedstock are shown in Table 4.

	Fatty acid composition								
Feed	C8:0	C10:0	C12:0	C14:0	C16:0	C18:0	C18:1	C18:2	C18:3
stock									
Rapeseed	-	-	-	-	2.0	4.0	52.0	18.0	10.0
					-	-	-	-	-
					6.0	6.0	65.0	25.0	11.0
Soybean	-	-	-	-	10.0	3.0	18.0	49.0	6.0
					-	-	-	-	-
					12.0	5.0	26.0	57.0	9.0
Palm	-	-	-	-	40.0	3.0	36.0	6.0	-
					-	-	-	-	
					47.0	6.0	44.0	12.0	
Coconut	4.6	5.0	44.0	13.0	7.5	1.0	5.0	1.0	-
	-	-	-	-	-	-	-	-	
	10.0	10.0	53.0	20.6	10.5	3.5	8.0	2.6	
Sunflower	-	-	-	-	5.0	3.0	14.0	48.0	-
					-	-	-	-	
					7.0	6.0	40.0	74.0	

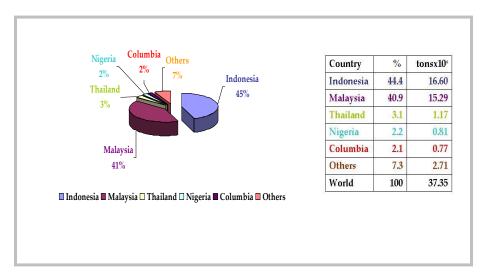
Table 4. Fatty acid composition of vegetable oils 11/

Natural characteristics of potential feedstock are described as follows:

Rapeseed Oil

Rapeseed, known as *Brassica napus*, has been a principal feedstock for biodiesel production in the EU since 2000. Main rapeseed producers include EU, China, and Canada. Rapeseed is mainly cultivated for animal feeds and rapeseed oil is for human consumption. Its seed has oil content about 38 – 44%. Rapeseed Methyl Ester (RME) has approximately iodine value about 97 g Iodine/100 g which iodine value of rapeseed oil before conversion approximately 94 – 120 g Iodine/100 g. Main composition of rapeseed oil is erucic acid, which is mildly toxic to humans in large doses. For lower levels of erucic acid than traditional, Canada bred *Brassica napus* and *Brassica rapa (campestris)* to became new hybrid called "canola", which contains about 40% oil content. Currently, Canada is the world top producer of rapeseed.

Soybean oil


Soybean is an annual plant, which is predominantly produced in the US which produces approximately 37% of the world's soybean production. In 2006/2007, the US produced soybean at about 87 million

metric ton. Although biodiesel from soybean oil shows good cold flow properties, it shows slightly poor oxidation stability and low cetane numbers. It should be blended with other feedstocks biodiesel to meet the cetane properties requirement^{12/}.

Palm oil

Palm oil is a potential feedstock for biodiesel production in the APEC region. When compared with other oilseeds, it is considered as the most economic feedstock because of its high yield.

The world palm oil production has increased rapidly from 37.35 million tons in 2006/2007 and projected to 43.22 million tons in 2008/2009. Indonesia and Malaysia are the world palm oil major producers. In 2006/2007 palm oil production in Indonesia and Malaysia were 16.60 million tons and 15.29 million tones which were about 44.4% and 40.9% of the world palm oil production, respectively as shown in Figure 3.

Figure 3. The world palm oil production in 2006/2007^{13/}

Palm oil based biodiesel has high cetane number and high oxidation stability. However, it shows poor cold-flow properties. It is usually blended with other biodiesel when used in cold weather^{14/}

Coconut Oil

Coconut is known as *Cocos nucifera Linn*. It has about 70% oil content. Coconut oil contains high saturated and short-chain fatty acids. This leads to better fuel performance in ignition quality and oxidation stability. Coconut oil biodiesel can reduce serious air pollutants such as black smoke and toxic air and lower emission of nitrous oxide and sulfur oxide^{15/}.

Biodiesel characteristics of various feedstock are shown in Table 5.

Feed stock	Details	Strong point	Weak point
Rapeseed Oil	 Excellent raw material for biodiesel production 	 CFPP of -10°C to 12°C can be achieved Has good oxidation stability with low antioxidant additive treats 	-
Soybean Oil	 Relatively high degree of unsaturation and high proportion of polyunsaturated fatty acid 	 Good cold flow properties 	 Relatively poor oxidation stability
Palm Oil	 Saturated and unsaturated fatty acids are in nearly equal amount 	 Give good oxidative stability 	 Poor cold flow properties
	 Contain tocopherols and tocotrienols 	 Prevent oxidation and long shelf life 	-
	 High melting point (about 36°C) 	 It becomes solid in temperate climates and semi-solid in tropical climates 	 It is not possible to make palm-based biodiesel that meets the CFPP specified in European winter diesel specifications

Table 5. Biodiesel characteristics of various feedstock

Feed stock	Details	Strong point	Weak point		
Palm Oil (Cont.)	 Palm oil biodiesel has high cetane levels 	 High cetane gives excellent driving characteristics and makes palm-based biodiesel prized as a fuel additive 	-		
Coconut Oil	 High degree of saturation, with shorter than C14 molecule 	 Good oxidation stability 	■ Biodiesel with low CFPP of -5°C		
Sunflower Oil	 High, Unsaturated triglyceride oils 	-	 Significant performance problems including formation of deposits and thickening 		

Table 5._(Cont.)

Normally biofuels are produced mainly from food crops which are rapeseed oil, soybean oil, palm oils and coconut oil. Recently, people are alerted on world food crisis and food security, these concerns have led to new approach of producing biodiesel from non-food feedstock such as waste cooking oil, jatropha oil, and algae for sustainable production.

Waste Cooking Oil

Waste cooking oil is an alternative feedstock for biofuel that help reduces biodiesel cost. However, it requires chemical treatment for cleaning before processing. The quality of oil depends on such various factors as type of oil used, cooking practices, and storage method. Waste cooking oil biodiesel is good for blending with other biodiesel when use in cold weather because it has higher CFPP than other biodiesel feedstock^{16/}.

Jatropha Oil

Jatropha, known as *Jatropha curcas Linn.*, is resistant to drought and pests. It can be grown in arid conditions and marginal land. Jatropha seeds and oil are mildly toxic. Its seeds have a high yield of oil. It contains oil about 33.5% of seed by weight. Its oil can be used to produce biodiesel and combusted as fuel. It is a non-food feedstock, so it can reduce competition between food and fuel. In Asia Pacific area, jatropha plantations are being created in India, China, Myanmar, and Philippines.

Algae

Several attempts have been made on using non-food biomass like algae for biofuel production. Algae have faster growing rates than crops. Algae can grow in polluted water and in marginal lands like desert. In addition, CO₂ emission from power plant can be the nutrient for algae cultivation. These issues push algae to be the potential future feedstock for biofuel production. However, problems challenging to the efficient of producing algae as future feedstock are the finding algal strain with a high oil content and faster growth rate together with the designing of cost-effective cultivation system. Currently numerous research works have been conducted for efficient algal fuel production in university and in private sector in many countries. A list of algal fuel producers shows in Table 6.

Table 6. List of algal fuel producers^{17/}

Country		Algal fuel producers	
Australia	•	Biomax	
Canada		Algae Fuel System, <u>Saskatoon</u> , <u>Canada</u>	
		International Energy, Inc.	
New Zealand	•	Aquaflow Bionomic Corporation	
Spain	•	AlgaeLink, in <u>Cadiz</u>	
	•	Bio Fuel Systems	
The Netherlands	•	AlgaeLink	
US	•	Algae Floating Systems, Inc.	
	•	AlgaeFuel, based in <u>Berkeley, California</u>	
	•	Algae Fuel System, <u>Ukiah, CA</u>	
		Algaewheel, based in <u>Indianapolis, Indiana</u>	
		AlgalOilDiesel, LLP, based in <u>Corvallis, Oregon</u>	
		Applied Research Associates, Inc., <u>Albuquerque, New</u>	
		<u>Mexico</u> and in <u>Panama City, Florida</u>	
		Aquatic Energy	
		Algoil Industries, Inc.	
	•	Aurora BioFuels	
	•	Blue Marble Energy	
		<u>Cellana</u> (Shell and <u>HR BioPetroleum</u>)	
		<u>Chevron Corporation</u> (in collaboration with <u>US-DOE</u> <u>NREL</u>)	
		Diversified Energy Corporation.	
	•	Global Green Solutions	
	•	GreenerBioEnergy	
	•	GreenFuel Technologies Corporation	
	•	Imperium Renewables former Seattle Biodiesel, LL	
	•	Inventure Chemical	
	•	Kai BioEnergy Corp.	
	•	Live Fuels, Inc.	
	•	OriginOil, Los Angeles, CA	
	•	PetroSun and Algae BioFuels Inc., Scottsdale, Arizona	
		Sapphire Energy	
		<u>Solazyme</u> , Inc.	
		Solix Biofuels, <u>Boulder, Colorado</u>	
		<u>Vertigro</u> , <u>El Paso, Texas</u>	
		Virgin Green Fund	

4. LESSON LEARNED ON THE ENGINES, VEHICLES AND EMISSION

While biodiesel has been substantially used for the sake of sustainable energy and environment, there are some concerns on the effect of the use of biodiesel on the engine and its emissions in several countries.

Canada has set up the Climate Change Central (Alberta) Project for demonstrating of blending and distribution within Canada and demonstrating of cold weather operability of biodiesel within Class 8 highway fleet. The tests had been conducted during 1 June 2007 to 31 August 2008. The interim observations showed that no blending issues as well as operation and maintenance issues with the truck fleet were reported.

Chinese Taipei has set up the Green Bus Programs for testing the use of biodiesel on engine since 2007. The biodiesel used for the investigation were produced from soybean and recycled cooking oil and blended with petrol diesel fuel. The city buses were fueled by B2 and B5. The result showed that no malfunction on the fuel pump, filter and injector were observed. For fuel tank corrosion test, there were no significant difference on the use of B2 and B5 compared to diesel fuel. Moreover, under the Green Country Program, B1 has been sold in 297 gas stations. There were no reports on any serious complaint on engine performances and emission issues except slightly lower power loss concerns.

The researchers from Gumma University in Japan studied the effect of biodiesel fuel from esterification of palm oil on direct injection diesel engine performance. They have witnessed that the biodiesel fuel blend ratio had an effect to particulate matter but it didn't effect on the heat release rate and exhaust gas composition.

From OEM side, the Japanese laboratory test was concerned on the effect of oxidative stability on fuel tank corrosion. JAMA suggested

that the oxidation stability of 10 hours be necessary to prevent metal tank corrosion. The test with biodiesel of 6 hours oxidation stability, corrosion was observed in metal fuel tank. In addition, the injector deposit problems occurred. With this regard, JAMA has proposed the oxidation stability of 10 hours instead of 6 hours according to EN standard.

In Korea, the field tests on passenger cars with B5 and B20 fuel and on locomotive cars with B20 fuel were conducted. For passenger cars tested with B5 fuel, there were no troubles found in the first year. However, some running troubles and fuel filter plugging were observed in the second year. For passenger cars, the plugging problem was quite serious when tested with B20. It required changing the fuel filters regularly to solve the problem. For locomotive engines tested with B20, the performances of fuel injector and pump passed the permissible range.

In US, there was cooperation between the researchers of West Virginia University and National Renewable Energy Laboratory to investigate the effect of biodiesel from soya methyl ester on heavy trucks. The test was conducted with B35 fuelling in unmodified diesel engine. It was found that by using B35 as fuel, the emission in terms of CO and HC was lower than by using diesel fuel. The engine performance test with B35 had no significant problems found during the test.

The studies on the effect of biodiesel on diesel engine and their emission had been conducted during July 1984 – May 1985 in Malaysia. Preliminary field trials were set up to investigate the effect of palm oil biodiesel (B100) on taxi's engine. During 1986 – 1994, exhaustive engine field trials were set up for testing the effect of palm oil biodiesel B50 and B100 on several types of engine. All of the above, it was found that biodiesel could reduce HC, CO, CO₂, particular matter and smoke emissions except for No_x. Biodiesel was good performance for the engines.

Testing on the effect of the use of biodiesel on engines/vehicles and their emission presents in the Table 7.

4. Lesson Learned on the Engines, Vehicles and Emission

Engine/Vehicle Lesson Learned on Engine Country **Fuel Type** Conditions and Emission Canada^{18/} 25 RME, 30 HDRD, **Blending and Distribution Test** No blending issues were reported B2 used in winter & Cold weather Operability of and 20 ULSD B5 used from spring though to No operational issues with the truck fleet biodiesel Test B2, B5 fall were reported (B5 is 75% Canola and Class 8 high way fleet No maintenance issues with the truck Cardlocks test locations were 25% tallow ME) established in Edmonton, fleet were reported Lloydminister, and Calgary Yard tank test location was established in Edmonton B2. B5 Chinese Mechanical fuel system Rig Test 480 hr daily plus 120 hr max Change of open pressure/fuel flux <3%</p> Taipei^{2/} (produced from Mechanical fuel injection system torque/ power No malfunction observed soybean and recycled consists of fuel pump, filter and Oil change per 120 hr cooking oil) injector of 3.5 T truck Spray characteristics, open pressure and leakage and fuel flux were monitored B0, B2, B5 Fuel tank corrosion Rig Test Minor corrosion observed on inside Tank bathed in hot water 70 L galvanized steel sheet tank (produced from surfaces 2000 hr daily pattern soybean and recycled (SECE 40/40) with coating of Notable corrosion observed on outside Tank corrosion, change of water cooking oils, epoxy-phenolic on the outside surfaces content and total acid in tested no extra acid added) surface fuels were monitored No significant difference between B0/B2/B5 cases

Table 7. Lesson learned from the use of biodiesel on the engine and vehicle

Table 7._(Cont.)

Country	Fuel Type	Engine/Vehicle	Conditions	Lesson Learned on Engine and Emission
Japan ^{19/}	Blend biodiesel fuel	<u>Marketing experience</u>	 Real Condition Biodiesel was higher concentration of FAME Impurities of Biodiesel Biodiesel performance at cold temperature 	 Fuel tank corrosion because of the lack of oxidation stability in FAME Degradation of rubbers and plastics were occurred Forming carbonic acid (adhesive material) was produced and stickled inside filter plugging engine that made pump failure and filter plugging engine stop Sludge or deposit formation in pump and injectors Exhaust emission was produced Cold temperature caused hardly starting
Japan ^{1/, 20/}	Commercial diesel fuel blended 5% FAME Commercial diesel fuel blended 5% FAME with 400 ppm of antioxidant	Effect of Oxidative Stability on Fuel Tank Corrosion (JAMA) Metal fuel tank	 2000 hr test with 8 hr at 60°C and 16 hr at normal temperature 	 Corrosion was observed in fuel tank when using biodiesel with 6 hr. oxidation stability No corrosion was observed in fuel tank when using biodiesel of 10 hrs. oxidation stability which was improved by adding antioxidant
	B5, B10, B20 (produced from palm oil and blended with diesel fuel) compare with diesel fuel	Direct Injection Diesel Engine Test Single-cylinder general-purpose engine was used for testing	 Excess air ratio was changed from 1.85 to 3.0 	Engine Performance: Changing of the blended ratio didn't change the combustion characteristic Emission: The amount of particulate matter of B20 more than B 5 and B10

Table 7._(Cont.)

Country	Fuel Type	Engine/Vehicle	Conditions	Lesson Learned on Engine and Emission
Korea ^{21/}	B5, B20 (produced from canola oil, waste fat)	Field Tests on Passenger Cars SANTAFE, SOENTO (Hyundai Inc), REXTON (Ssangyong Inc.)	 60,000 km running for each car Emission tests every 10,000 km Check on fuel injection system 	 Effecting of B5 No troubles were found in the first year Some running troubles were observed in the second year tests The troubles had been mainly due to fuel filter plugging and removed with the micro filtration of biodiesel Effecting of B20 Troubles were observed even with biodiesel prepared by microfiltration Monoglycerides were mainly responsible for the troubles Regular change of the fuel filters is needed to get rid of the troubles
	B20 (produced from canola oil, waste fat)	<u>Field tests on locomotive</u> Diesel engine: KTA-19L (Cummings Inc., US)	 Running tests for 8 months (October 2006 – May 2007) After the test, performances of fuel injector and pump have been evaluated by Korea Branch of Cummings Inc. 	 Performance of Fuel Pump: Flow rate and pressure are within the permissible range Evaluation of Fuel Injector: Leakage tests on fuel injector with B20 were passed

Table 7._(Cont.)

Country	Fuel Type	Engine/Vehicle	Conditions	Lesson Learned on Engine and Emission
USA ^{22/}	B35 (Soya methyl ester) compared with No.2 diesel	Engine Performance & Emission Tests Nine heavy trucks with two different types of engines (six trucks were equipped with Cummins 855 engine made in the late 1980s and three trucks were equipped with DDC series 60 engine made in the 1990s) without engine modifications	 West Virginia University (WVU) uses their Transportable Heavy Duty Chassis Dynamometer Emissions Testing Laboratory and their conditions for testing engine performance & emission tests 	 Engine Performance: The performance of all vehicles that fueled with biodiesel blends was good. They didn't have fuel-related problem during tests. The fuel economy of them showed that no significant difference between biodiesel blends and diesel. Emission Analysis: B35 and no.2 diesel have similar CO, NOx and HC emission trends. The CO and HC emissions level of B35 fueled is lower than no.2 diesel The NOx emission of B35 is a bit higher than no.2 diesel\
Malaysia ^{23/}	B10, B20, B50 (produced from palm oil)	<u>Stationary Engine Test</u> Yanmar L70AE-DETMYC	 Vary level of engine speed, engine load, and engine break mean effective pressure 	 Engine Performance: Biodiesel and no.2 diesel fuel have similar in terms of thermal efficiency Emission Analysis: All biodiesel blends can reduce CO₂, CO, HC, particular matter and smoke emissions except for NO_x emission

5. NECESSARY ADDITIVES

Biodiesel is considered to have several advantages over fossil fuel such as reducing exhaust emissions, especially soot and carbon monoxide. However, biodiesel possesses poor inherent, cold-flow properties, and oxidation stability when compared to diesel fuel.

Several approaches have been taken to resolve these barriers. The coldflow properties depend on the type of feedstock used. The higher unsaturated fatty acids, the better cold-flow properties are. The common approach is to select the suitable feedstock for the climate requirement or to use the cold-flow improvers. The other approach to improve the cold-flow properties is through winterization process in which the high melting saturated esters are removed. The lower saturated fatty acids remaining leads to the improvement of the coldflow properties. By this mean, however, it may effect to its oxidation stability.

Biodiesel is more sensitive to oxidative degradation than petrodiesel. Oxidation stability is a measure of the stability or the shelf life of fuel during storage. The European standard (EN 14214) specifies minimum oxidation stability of 6 hours at 110°C based on the EN 14112 specification or Rancimat test. Oxidation stability of biodiesel depends on the feedstock, processing conditions, contaminants, and storage conditions. The storage conditions include duration, temperature, exposure to air and light, and presence of metals and impurities.

The fatty acid composition of feedstock will directly affects the biodiesel stability. Biodiesel having higher amounts of polyunsaturated fatty acids is less stable than the one having lower amounts of polyunsaturated fatty acids. Figure 4 shows fatty acid profile of various types of biodiesel feedstock. Figure 4 presents that soybean oil containing higher amounts of polyunsaturated is less stable than palm oil which containing lower amounts of polyunsaturated fatty acids.

23

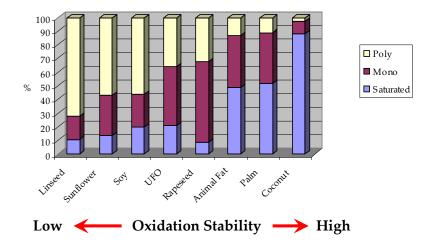


Figure 4. Fatty acid profile of various biodiesel feedstocks^{24/}

Natural or synthetic antioxidant additives have been studied to improve the oxidation stability. Numerous attempts on searching efficient antioxidant additives for biodiesel have been conducted in governmental agencies, research institutes, and chemical companies.

Table 8 shows the effect of antioxidant additives on oxidation stability of biodiesel from various oils. The data shows that the biodiesel fuels produced from sunflower, soybean oil and the distilled biodiesel have induction period of lower than 6 hours. The synthetic antioxidants pyrogallol (PY), propylgallate (PG), TBHQ, and BHA could enhance the induction period tremendously^{25/}. The effectiveness of antioxidant depends on the kind of feedstock used for biodiesel production. Beside the above mentioned antioxidants, other new synthetic antioxidants also been introduced for extending the shelf life of biodiesels from various feedstocks. Application of high amount of certain antioxidants might affect on other fuel properties. The studies of Baynox, DTBHQ, Vulkanox ZKF, Ionox 220, Vulkanox BKF as antioxidants in rapeseed oil methyl ester, distilled cooking oil methyl ester and tallow methyl ester showed adverse effect on other fuel properties as described below^{26/}:

5. Necessary Additives

 With the use of 1,000 mg/kg antioxidant, it had no impact on other parameters which were the viscosity, density, CFPP, carbon residue and sulphated ash content, except acid value. When using Vulkanox ZKF as additive in the biodiesel of high acid value, acid values increased strongly outside the given limit of 0.5 mg KOH/g.

25

 With the use of 250 mg/kg antioxidant, it showed no impact of all parameters including acid value. All parameters were within the given limit even with the biodiesel of high acid value up to 0.42 mg KOH/g.

Table 8. The effect of antioxidant additives on oxidation stability of biodiesel from various oils

Antioxidant additives	Biodiesel from oils	Induction period With no additive (hrs.)	Additive amount (ppm)	Induction Period With additive (hrs.)	Reference
РҮ	undistilled RME (distilled RME)	9 (3.5)	250	22. (11.5)	Mittelbach (2003) ^{25/}
PG	undistilled RME (distilled RME)	9 (3.5)	250	17 (6.5)	Mittelbach (2003) ^{25/}
ВНА	undistilled RME (distilled RME)	9 (3.5)	250	17 (10)	Mittelbach (2003) ^{25/}
РҮ	undistilled frying oil (distilled RME)	6 (4)	250	24 (18)	Mittelbach (2003) ^{25/}
PG	undistilled frying oil (distilled RME)	6 (4)	250	19 (12.5)	Mittelbach (2003) ^{25/}
ВНА	undistilled frying oil (distilled RME)	6 (4)	250	9 (9)	Mittelbach (2003) ^{25/}
РҮ	undistilled SME (distilled RME)	3.5 (1.1)	250	11 (1.2)	Mittelbach (2003) ^{25/}
PG	undistilled SME (distilled RME)	3.5 (1.1)	250	7 (1.6)	Mittelbach (2003) ^{25/}
TBHQ	undistilled SME (distilled RME)	3.5 (1.1)	1,000	5.8 (6.4)	Mittelbach (2003) ^{25/}
Baynox	RME	4.60	250	7.0	Mittelbach (2004) ^{26/}
Vulkanox ZKF, Vulkanox BKF, Ionox 220, DTBHQ	RME	4.60	1,000	>7.4-9.4	Mittelbach (2004) ^{26/}
Baynox, DTBHQ, Vulkanox ZKF, Vulkanox BKF, Ionox 220	RCOME	7.50	250	>8.0-17.0	Mittelbach (2004) ^{26/}

	5.	Ν	ecessary	Additives
--	----	---	----------	-----------

Table 8._(Cont.)

Antioxidant additives	Biodiesel from oils	Induction period With no additive (hrs.)	Additive amount (ppm)	Induction Period With additive (hrs.)	Reference
Baynox, Vulkanox ZKF, Vulkanox BKF, Ionox 220, DTBHQ,	RCOME	7.50	1,000	>11.8-34.1	Mittelbach (2004) ^{26/}
Vulkanox BKF	DRCOME	2.00	250	8.0	Mittelbach (2004) ^{26/}
Baynox, DTBHQ, Vulkanox ZKF, Ionox 220, Vulkanox BKF	DRCOME	2.00	1,000	>11.0-26.5	Mittelbach (2004) ^{26/}
Kerobit [®] TP 26	Depending mainly on biodiesel quality		(Recommended 200-1,000 ppm)		BASF ^{27/}
Kerobit® 3627	Biodiesel from pure plant oil		(Recommended 100-500 ppm)		BASF ^{27/}
	RME	7.20	300	11.50	BASF ^{27/}
	SME	4.20	800	7.80	BASF ^{27/}
TBHQ, BHA	Distilled SBME	0.77	500	>6.0	Tang (2008) ^{28/}
РҮ	Distilled SBME	0.77	1,000	>6.0	Tang (2008) ^{28/}
VitaminE, BHA, TBHQ, PG	Used Frying Palm Oil Methyl Ester	3.42	100	>6.0	Loh (2006) ^{29/}
BHA, PG	Used Frying Palm Oil Methyl Ester	3.42	250	>6.0 and storage for 5 weeks	Loh (2006) ^{29/}

Table 8._(Cont.)

Antioxidant additives	Biodiesel from oils	Induction period With no additive (hrs.)	Additive amount (ppm)	InductionPeriod With additive (hrs.)	Reference
VitaminE, BHT, TBHQ	Used Frying Palm Oil Methyl Ester	3.42	500	>6.0 and storage for 5 weeks	Loh (2006) ^{29/}
None	Fresh Palm Oil Methy lEster	23.30	-	-	Loh (2006) ^{29/}
None	Palm Oil Methyl Ester From Spent Bleaching Earth	14.60	-	-	Loh (2006) ^{29/}
РҮ	Palm Oil Methyl Ester	10.80	50	21.8 and maintaining >6 hrs for 7 weeks storage	Thanmongkhon (2008) ^{30/}
TBHQ	Palm Oil Methyl Ester	10.80	50	14.2 and maintaining > 6 hrs for 7 weeks storage	Thanmongkhon (2008) ^{30/}
Kerobit 3627	B10		Recommend highest addition 500 mg/kg	8	31/
Chimec CH 4636	B10		"	8	31/
Chimec R 876 HFP	B10		"	8	31/
IRGASTAB BD 100	B10		"	8	31/
IRGASTAB BD 50	B10		Recommend highest addition 500 mg/kg	8	31/
R120	B10		"	8	31/

	5.	N	ecessary	Additives
--	----	---	----------	-----------

Table 8._(Cont.)

Antioxidant additives	Biodiesel from oils	Induction period With no additive (hrs.)	Additive amount (ppm)	InductionPeriod With additive (hrs.)	Reference
R130	B10		"	8	31/
BioStable ™ 403E	B10		"	8	31/
DIESOLIFT BD-3	B10		"	8	31/
BF320	B10		"	8	31/
Baynox plus	B10		и	8	31/
BioExtend 30 HP	B10		"	8	31/
IONOL BF200	B10		"	8	31/
Vitamin E	Crude Palm Oil Methyl Ester		644	25.70	Yung (2006) 32/
α-Tocopherol	Distilled Palm Oil Methyl Esters	3.52	1000	6.17	Yung (2006) 32/
ВНТ	Distilled Palm Oil Methyl Esters	3.52	50	6.42	Yung (2006) 32/
ТВНQ	Distilled Palm Oil Methyl Esters	3.52	50	8.85	Yung (2006) ^{32/}

6. RELATED WORKS ON BIODIESEL FUEL STANDARDS

Related works on biodiesel fuel standards are actively progressing in international forums. Those projects are focusing on the alignment of biodiesel specifications and promoting the biodiesel for sustainable consumption and production.

6.1 Internationally Compatible Biodiesel Standards : Tripartite task force

Biodiesel Tripartite task force^{33/} was an initiative of the three governments of Brazil, the European Commission, and the United Stated of America, which aimed to clarify and identify the existing biofuels standards in order to promote harmonization in the global biofuels markets and drives away the disadvantage of biofuels among the three regions. The resulting standard – classified biodiesel specification, which refer to individual parameters, their values, and related test methods, - is presented in the "White Paper on Internationally Compatible Biofuels Standards" as follows:

- □ *Category A*: similar (sulfated ash, alkali and alkaline earth metal content, free glycerol content, copper strip corrosion, methanol and ethanol content, acid number)
- □ *Category B*: significant differences between parameters and methods (total glycerol number, phosphorus content, carbon residue, ester content, distillation temperature, flash point, total contamination, water content and sediment)
- *Category* C: fundamental differences (sulfur content, cold climate operability, cetane number, oxidation stability, mono-, di-, tri-acylglycerides, density, kinematic viscosity, iodine number, linolenic acid content, polyunsaturated methyl ester)

It can be summarized that, to harmonize and align the standards of the three parties, the parameters in Category A indicated as *easily done* in

alignment, while those in Category B and C are *feasible with some efforts* and *not feasible at present*, respectively. Biodiesel standards in Brazil and US are applicable to FAME and FAEE using for a blend stock of diesel fuel while that in EU are applicable to FAME in both of using directly as diesel fuel (or so-called B100) and using as a blend stock for diesel fuel. Some parameters are currently not aligned. Their non-alignment may have low impact when using in different regions and purposes. That is the use as fuel for heavy duty vehicles or for passenger cars. But these low impact parameters may need huge efforts to be aligned.

6.2 ERIA project: Working group for "Benchmarking of biodiesel fuel standardization for vehicles in East Asia"

Economic Research Institute for ASEAN and East Asia (ERIA) ^{1/} is an international organization that was established with an aim to promote the economic integration in East Asia. The project entitled "Benchmarking of Biodiesel Fuel Standardization for Vehicles in East Asia" was launched to benchmark biodiesel standard in Ease Asia region. Members of this working group from 12 countries in East Asia region jointly worked on the harmonization of biodiesel standards for East Asia region based on the EU standard. As the EU or EN 14214 standard was developed mainly on the properties of European feedstock, the ERIA has brought the properties of feedstock available in East Asia into their consideration.

In the process of developing benchmarking standard, the oxidation stability was raised up as a critical issue. It has a crucial impact on metal fuel tanks which popularly used for vehicles in Asia. The current oxidation stability of 6 hours is insufficient for preventing metal tank corrosion. It was recommended that oxidation stability should be 10 hours. Moreover, polyunsaturated FAME are easily oxidized and form sludge in fuel tank, the substances formed from the oxidation process cause seriously influence engine performance. on Thus, polyunsaturated FAME especially those produced from fish oil which consisting of more than 4 double bond should not be used.

The ERIA biodiesel fuel Standard was proposed and recognized at the Second EAS Energy Ministers Meeting on 7 August 2008 in Bangkok, Thailand. EAS-ERIA biodiesel fuel benchmark standard: 2008 shows in Table 9. It had been set up for B100 aiming for low level blending with diesel fuel.

Items	Units	EAS-ERIA Biodiesel Fuel	
		Benchmark Standard: 2008	
Ester content	mass%	96.5 min	
Density	kg/m³	860 - 900	
Viscosity	mm²/s	2.00 - 5.00	
Flash point	°C	100 min	
Sulfur content	mass%	0.0010 max	
Distillation, T90	°C	-	
Carbon residue (100%) or	mass%	0.05 max	
Carbon residue (10%)		0.3 max	
Cetane number		51.0 min	
Sulfated ash	mass%	0.02 max	
Water content	mg/kg	500 max	
Total contamination	mg/kg	24 max	
Copper corrosion		Class-1	
Oxidation stability	hrs.	10.0 min ¹	
Acid value	mgKOH/g	0.50 max	
Iodine value	g Iodine/100 g	Reported ²	
Methyl Linolenate	mass%	12.0 max	
Polyunsaturated FAME	mass%	N.D. ²	
(more than 4 double bonds)			
Methanol content	mass%	0.20 max	
Monoglyceride content	mass%	0.80 max	
Diglyceride content	mass%	0.20 max	
Triglyceride content	mass%	0.20 max	
Free glycerol content	mass%	0.02 max	
Total glycerol content	mass%	0.25 max	
Na+K	mg/kg	5.0 max	
Ca+Mg	mg/kg	5.0 max	
Phosphorous content	mg/kg	10.0 max	

Table 9. EAS-ERIA biodiesel fuel benchmark standard: 2008

¹ Need more data & discussion from 6 to 10 hours

² Need more data and further discussion

Source: ERIA (2008) ERIA Research Project Report 2007 No. 6-2

"Benchmarking of Biodiesel Fuel Standardization in East Asia"1/

6.3 World wide fuel charter (WWFC)

World wide fuel charter (WWFC)^{34/} was created in 1998 among the including European Automobile manufacturers alliances four Association (ACEA), Alliance of Automobile Manufacturers, Engine Manufacturers Association (EMA), and Japan Automobile Manufacturers Association (JAMA). It was intended to promote understanding of the impact of fuel quality on engine, vehicle emissions, and performance as well as the harmonization of fuel quality worldwide that needed in different markets. The first edition of WWFC Biodiesel Guidelines, and Ethanol Guidelines were drafted and called for comments until 1 October 2008. The summary of specifications for B100 blendstock with test method is shown in Table 10.

Property	Value	Units	Test Methods
Ester content	96.5 min	% m/m	ISO: EN 14103 mod; EN 14078
			Other: ABNT NBR 15342
Density	0.86 - 0.90	g/ml	ISO: EN 3675
		@ 15°C	ASTM: D4052
			JIS: K 2249
			Other: EN 12185
			ABNT NBR 7148/14065
Kinematic Viscosity	$2.0 - 5.0^{1}$	mm²/s	ISO: EN 3104
-		@ 40°C	ASTM: D445
			JIS: K 2283
			Other: ABNT NBR 10441
Flash Point	100 min	°C	ISO: 2719
			ASTM: D93
Sulfur	10 max	ppm	ISO: EN 20846/20884
			ASTM: D5453/D2622
			JIS: K3541-1, -2, -6 or -7
Carbon Residue:	0.05 max	% m/m	ASTM: D4530
Ramsbottom, on 100%			
distillation residue			

Table 10. WWFC guidelines for B100 blendstock for using in B5 blends

Table 10._(Cont.)

Property	Value	Units	Test Methods
Cetane Number	51 min		ISO: 5165 ASTM: D613 JIS: K 2280
Sulfated Ash	0.005 max	% m/m	ISO: EN 3987 ASTM: D874 Other: ABNT NBR 984
Water	500 max	mg/kg (ppm)	ISO: EN 12937
Water and Sediment	0.05 max	% v/v	ASTM: D2709
Total Contamination	24 max	mg/kg	ISO: EN 12662 ASTM: D2276, D5452, D6217
Corrosion: Ferrous	Light rusting, max	Rating	ASTM: D665, Procedure A
Oxidation Stability: Induction Period	10 min	hr	ISO: EN 14112 or prEN 15751 as alternative
Total Acid Number	0.5 max	Mg KOH/g	ISO: EN 6618, EN 14104 ASTM: D664, D974 JIS: K 2501 Other: ABNT NBR 14448
Iodine Number	130 max ²	g I ₂ /100 g	ISO: EN 14111 (for use on B100 only, not blends)
Linolenic acid methyl ester	12.0 max	% m/m	ISO: EN 14103 mod
Polyunsaturated acid methyl ester (≥4 double bonds)	1 max	% m/m	ISO: prEN 15799
Methanol	0.20 max	% m/m	ISO: EN 14110 JIS: K 2536 Other: ABNT NBR 15343
Glycerides			ISO: EN 14105
Mono-glyceride	0.80 max	% m/m	ISO: EN 14105 Other: ABNT NBR 15342
Di-glyceride	0.20 max	% m/m	ISO: EN 14105 Other: ABNT NBR 15342
Tri-glyceride	0.20 max	% m/m	ISO: EN 14105 Other: ABNT NBR 15342

Table 10._(Cont.)

Property	Value	Units	Test Methods
Glycerin (glycerol)			
Free glycerin	0.02 max	% m/m	ISO: EN 14105/14106
			ASTM: D6584
			Other: ABNT NBR 15341
Total glycerin	0.24 max	% m/m	ISO: EN 14105
			ASTM: D6584
			Other: ABNT NBR 15344
Alkali metals	5 max	ppm	ISO: EN 14108/14109,
(Na+K)			EN 14538
Alkaline metals	5 max	ppm	ISO: EN 14538
(Ca+Mg)			
Phosphorus	4 max	ppm	ISO: EN 14107
1			ASTM: D4951, D3231
Ash Content	0.001 max	% m/m	ISO: EN 6245
			ASTM: D482
			JIS: K 2272
Trace Metals	No addition		ASTM D7111

¹ For temperatures at or below –20°C, viscosity should be at or below 48 mm²/s to avoid potentially dangerous loads on the fuel injection pump drive system

² May unnecessarily preclude certain feedstocks

Source: WWFC (2008) "Proposal of the World Wide Fuel Charter (WWFC) Guidelines" 34/

The comparison of US, EU, ERIA and WWFC biodiesel specification is shown in Table 11.

Property	Units	US	EU	ERIA	WWFC
		ASTM	EN14214:	EAS-ERIA	(For B100
		D6751-	2003	Biodiesel Fuel	Blendstock
		07b		Benchmark	for use in B5
				Standard:	Blends)
				2008	,
Ester content	mass%	-	96.5 min	96.5 min	96.5 min
Density	kg/m ³	-	860 - 900	860 - 900	860 - 900
Viscosity	mm²/s	1.9 - 6.0	3.5 - 5.0	2.0 - 5.0	2.0 - 5.01
Flashpoint	°C	93 min	120 min	100 min	100 min
Sulfur content	mass%	0.0015	0.0010	0.0010 max	0.0010 max
		max	max		
Carbon residue (100%)	mass%	0.05 max	-	0.05 max	0.05 max
Cetane number		47.0 min	51.0 min	51.0 min	51 min
Sulfated ash	mass%	0.02 max	0.02 max	0.02 max	0.005 max
Water content	mg/kg	-	500 max	500 max	500 max
Water and sediment	vol%	0.05 max	-	-	0.05 max
Total contamination	mg/kg	-	24 max	24 max	24 max
Copper corrosion	rating	No. 3	Class 1	Class 1	Light rusting,
					max
Oxidation stability	hrs.	3.0 min	6.0 min	10.0 min ²	10 min
Acid value	mgKOH/g	0.50 max	0.50 max	0.50 max	0.5 max
Iodine value	g I ₂ /100 g	-	120 max	Reported ³	130 max 4
Methyl Linolenate	mass%	-	12.0 max	12.0 max	12.0 max
Polyunsaturated	mass%	-	1 max	N.D. ³	1 max
FAME					
Methanol content	mass%	0.20 max ⁵	0.20 max	0.20 max	0.20 max
Monoglyceride	mass%	-	0.80 max	0.80 max	0.80 max
content					
Diglyceride content	mass%	-	0.20 max	0.20 max	0.20 max
Triglyceride content	mass%	-	0.20 max	0.20 max	0.20 max
Free glycerol content	mass%	0.02 max	0.02 max	0.02 max	0.02 max
Total glycerol content	mass%	0.24 max	0.25 max	0.25 max	0.24 max
Na+K	mg/kg	5.0 max	5.0 max	5.0 max	5.0 max
Ca+Mg	mg/kg	5.0 max	5.0 max	5.0 max	5.0 max
Phosphorous content	mg/kg	10.0 max	10.0 max	10.0 max	4.0 max

Table 11. The comparison of US, EU, ERIA and WWFC biodiesel specification

 1 For temperatures at or below –20°C, viscosity should be at or below 48 mm²/s to avoid

potentially dangerous loads on the fuel injection pump drive system ² Need more data & discussion from 6 to 10 hours

³ Need more data and further discussion

⁴ May unnecessarily preclude certain feedstocks

⁵ 130°C of flashpoint is available instead of measuring methanol content

6.4 ISO/TC 28 35/

ISO/TC 28 was set up by the "International Organization for Standardization: Technical Committee 28" as a reference for many different types of petroleum products and lubricants in US and international. The prime aim of ISO/TC 28 is to extend the scopes of existing standards and developing new standards to the acceptable level and fulfill the needs of the international community.

To the extend of Biofuel production quality, ISO TC28/SC7 is a new technical committee formed by ISO to deal with liquid biofuel. There are three working groups being proposed including TC28/SC7/WG1 on bioethanol, TC28/SC7/WG2 on biodiesel, and TC28/SC7/WG3 joint working group (JWG) with TC34/SC11 input/output quality for feedstock and fatty acid esters used in biodiesel.

6.5 Roundtable on sustainable biofuels (RSB) ^{36/}

Unlike the above mentioned biodiesel standards which deal with the technical fuel properties, the Roundtable on Sustainable Biofuels or RSB developed draft global standards for sustainable biofuels production and processing. The RSB aims to address the potential impacts as unintended consequences of the farmers and biodiesel producers' activities. The standard for global stakeholder feedback on "Version Zero" of its sustainability principles and criteria was proposed since August 13th 2008. It includes *principles* (general principles of sustainable production), and *criteria* (conditions to be achieve these principles). The "Version Zero" draft standard includes the following issues:

- 1. Legality
- 2. Consultation, planning, and monitoring
- 3. Greenhouse gas emissions
- 4. Human and labour rights
- 5. Rural and social development
- 6. Food security
- 7. Conservation
- 8. Soil
- 9. Water
- 10. Air
- 11. Economic efficiency, technology, and continuous improvement
- 12. Land right

7. OPPORTUNITIES, GAPS, BARRIERS AND LESSON LEARNED

At the second workshop, held on July 2008 in Chinese Taipei, the participants shared their experiences and ideas about barriers, needs and lesson learned of the use of biodiesel on the engine and the emissions in the roundtable discussion as shown in Table 12.

Description	Barriers	Needs	Lesson Learned
Standard	 Difficulty of setting up neutral specifications from various feedstock Non-neutral standard like EN standard is difficult to adaptation of feedstock Current specification isn't appropriate for new engine technology Lack of coordination among various discipline Using performance-base specification for meaningful results with reasonable limit based on science 	 Standard should be designed for feedstock and process neutral and fit to use as specified blend Difference of oxidation stability should be considered. Quality enforcement once feedstock/process neutral standard is obtained (for producer, distributor and end users) e.g. BQ9000 Specify country acceptance on BDF specification 	 Current testing method to measure ester content is not appropriate for PME & CME Mono-glyceride content limit is required for different biodiesel (for feedstock neutral) Maybe more appropriate to have many vegetable-oil standard than a single one for all

Table 12. Barriers, needs, and lesson learned of the use of biodiesel on the engine and the emissions

Table 12._(Cont.)

Description	Barriers	Needs	Lesson Learned
Feedstock	 Competition between food & fuel in the future Lack of verifiable sustainability information Difficulty of defining sustainable agricultural practice 	 Sustainable feedstock is required (not compete with food) Sustainable issue for the future must be concerned, e.g. new feedstock, process FAEE in the future due to increasing methanol price in the future 	 BDF maybe a temporary solution for diesel engine. How about BTL and other new generation fuel
Technical	 No technical support for adding the iodine value specification to WWFC standard Suitable choices for engine oil Maintain process-quality relationship Chemical process needs further improvement not optimized for Jatropha feedstock 	 Technological support requires for different feedstock, process Handling about water contamination in humid countries after B100 processing Extensive technical evidence required for modification to existing standard Effects of various properties on engine Less sophisticated and less expensive test method Upper limit of the blend and recommendation for engine designers in the future (is it B100, B20 or others?) 	 Technical development information must be shared Moisture content easily increases during transportation of fuel from refinery to gas station Different requirement for light vs. heavy duty vehicle Accessible testing methodology is the key for quality control

Table 12._(Cont.)

Description	Barriers	Needs	Lesson Learned
Technical (Cont.)		 True understanding of chemical property limit e.g. iodine value Urgently establish technological working group to make recommendation to EWG for micro-algae derived biodiesel commercialization A quickly test at gas station to protect end- users from false blending of community standard BDF 	
Economic	 Different economy has different infrastructure, e.g. vehicle type & system 	 Different economy requires common guideline on biodiesel usage Agreed testing method is required for cross-border trading Export market is required and fleet test data done in APEC must be reported to the rest of the world 	• It's not a good idea to estimate quality management system equally important as setting an APEC standard due to various differences among economy

Table 12._(Cont.)

Description	Barriers	Needs	Lesson Learned
Political & Social	 Negative mindset from end-users Lack of financial support for sustainable development Hesitation to promote biofuel after new reports coming out. It needs further tests to confirm the results 	 Reasonable standard is required to protect consumer while promoting biodiesel Accessible channel and cheap test lab sponsored by government Recommend the adoption of B5 as a method of facilitation the implementation of biodiesel trade in the APEC region 	 Complicated value chain for BDF One incident doesn't imply for all bad experience on specific incident Industry can manage to comply with whatever standard set forth by government
Cooperation	 Difficulty of traceability/repeatability on data Common understanding of the real experience in trust equation from engine manufacture, fuel provider, government body 	 Information exchange among the APEC members, e.g. successful implementation methodology, benchmark standard Collaborative work effort to save time, budget Coordination/cooperation on micro-algae research 	 Information exchange is good Impossible to promote biodiesel without supports from all stakeholders Vehicle owner's feedback is value for proper consideration of vehicle safety

8. CONCLUSIONS

As a result of the project initiated by the APEC Energy Working Group's Expert Group on New and Renewable Energy Technologies under the APEC 21st Century Renewable Energy Development Initiative Collaborative IX, this project was undertaken to promote the development of standardization of biodiesel produced in the APEC region.

To responding the project objective, the current biodiesel standards, potential feedstocks, and lessons learned from the use of biodiesel were reviewed in this report in order to provide useful information for building up the capacity, and expanding the knowledge and awareness of the APEC economies in contribution to the establishment the guideline for development of biodiesel standard. Valuable ideas concerning the barriers, needs, and opportunities have been brought together from key eminent experts. Yet, the information gained from the workshops, particularly the oxidation stability requirement, for example, reflects one of the difficulties in setting up a neutral biodiesel standard in the APEC region. There is no unique solution to set up a biodiesel standard in this region since there are many critical factors such as climate, feedstock, and vehicle type. It was suggested to increase such cooperative activities as information exchange and technical support among governments, businesses, organizations, and individuals from the APEC member economies.

The report is therefore a contribution to a better understanding of the current status and the possible way forward for biodiesel standards in the APEC and as a beginning step for further discussions. It can be used as background for future cooperative projects in view of the trade impacts of biodiesel standards in the APEC region.

9. **REFERENCES**

- ^{1/} Goto S., ERIA Research Project Report 2007 No.6-2 "Benchmarking of Biodiesel Fuel Standardization in East Asia" (2008).
- ²⁷ Lee (Tom) H.T., Chen M.D., Liu D.C., Wang J.S, Yang S.M. (Industrial Technology Research Institute), Lessons Learned and Recommendation on the Use of Biodiesel – Chinese Taipei, Presentation in APEC Workshop on Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region, Chiness Taipei, 16th July 2008. <u>http://www.netd.itri.org.tw/apec/presentations-</u> <u>pdf/Chinese_Taipei_Tom_Lee_Lessons_Learned_and_Recommendati</u> <u>ons_on_the_Use_of_Biodiesel-Chinese_Taipei.pdf</u> accessed on January 9, 2009.
- ^{3/} Kusdiana D., (Ministry of Energy and Mineral Resources), Recent Updates on Biofuel Development in Indonesia, Netherlands, 19th September 2006. <u>http://www.senternovem.nl/mmfiles/W6.DadanKusdiana_tcm24-275584.ppt</u> accessed on January 9, 2009.
- ^{4/} Goto S., Shitoni H., Biodiesel Fuel Standard in Japan, Presentation in International Conference on the Commercialization of Bio-fuels, 17th September 2007. <u>http://www.keei.re.kr/keei/download/seminar/070917/3_Shinichi_Goto_.pdf</u> accessed on January 9, 2009.
- ^{5/} Korea Petroleum Quality Institute, The Overview & Trend of Bio-diesel in Korea, 28th September 2005. <u>http://www.pecj.or.jp/japanese/overseas/koria/2005_1st_oiltech/07_K</u> <u>PQI-English.pdf</u> accessed on January 9, 2009.
- ^{6/} The Department of Energy's Technical Committee on Petroleum Products and Additives (DOE/TCPPA). 2007, Invitation to Comment on the Draft Philippine National Standards for Fatty Acid Methyl Ester (B100) Specification (DPNS/DOF QS 002 2007).

http://www.doe.gov.ph/popup/dpns%20doe%20qs%20002%202007.pdf accessed on January 9, 2009.

^{7/} Choo Y.M., Lau (Harrison) L.N., Yung C.L. (Malaysian Palm Oil Board – MPOB), Recommendation and Lesson Learned on the Use of Biodiesel for Future Practice, Presentation in APEC Workshop on Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region, Chiness Taipei, 16th July 2008. <u>http://www.netd.itri.org.tw/apec/presentations-</u>

pdf/Malaysia_Harrison%20Lau%20Lik%20Nang_Recommendation% 20and%20Lessons%20Learned%20on%20the%20Use%20of%20Biodie sel%20for%20Future%20Practice(rev).pdf_accessed on January 9, 2009.

- ^{8/} Department of Alternative Energy Development and Efficiency, Ministry of Energy. <u>http://www.dede.go.th/dede/fileadmin/usr/bers/biodiesel/biodiesel_2</u> <u>007.pdf</u> accessed on January 9, 2009.
- ^{9/} Rao Y.P., Biofuels Standards & Regulations in India, Presentation in International Conference on Biofuels Standards, Brussels, 27th February 2007. <u>http://ec/europa.eu/energy/res/events/doc/biofuels/presentation_rao.</u> <u>pdf</u> accessed on January 9, 2009.
- ¹⁰ United States Department of Agriculture (USDA), Foreign Agricultural Service, World Agricultural Production. <u>http://www.fas.usda.gov/wap/circular/2009/09-01/productionfull01-09.pdf</u> accessed on February 1, 2009.
- ^{11/} The Lipid Handbook, 3rd ed. Gunstone, F.D., Hardwood, J. L., Dijikstra, A. J., Eds; CRC Press, Taylor & Francis Group, LLC, 2007.
- ^{12/} Greenergy Perspective, Soy oil in biodiesel. 21 December 2008. <u>http://www.greenergy.com/perspectives/Soy.pdf</u> accessed on December 21, 2008.
- ^{13/} United States Department of Agriculture (USDA), Commodity Intelligence Report, 31 December 2007. <u>http://www.pecad.fas.usda.gov/highlights/2007/12/Indonesia_palmoil/</u> accessed on December 21, 2008.

^{14/} Greenergy Perspective, Palm oil in biodiesel.

<u>http://www.greenergy.com/perspectives/Palm.pdf</u> accessed on Dec 21, 2008.

^{15/} Asian and Pacific Coconut Community (APCC). Coconut Bio Fuel – Part II: CME – Prospects and Issues. Cocomunity, Vol.XXXVI No. 12, 1 December 2006. <u>http://groups.google.com/group/coconut/web/apcc?version=6</u>

accessed on December 21, 2008.

- ^{16/} Greenergy Perspective, Making biodiesel from by-products. <u>http://www.greenergy.com/perspectives/by-products.pdf</u> accessed on December 21, 2008.
- ^{17/} <u>http://en.wikipedia.org/wiki/List of algal fuel producers</u> accessed on January 20, 2009.
- ^{18/} Stumborg M., Canadian Biodiesel Standards and Activities APEC Biodiesel Workshop, Presentation in APEC Workshop on Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region, Chiness Taipei, 17th July 2008. http://www.netd.itri.org.tw/apec/index.htm
- ^{19/} Takei Y. (Japan Automobile Manufacturers Association JAMA), Issues of Bio Diesel and Harmonized Specification, Presentation in APEC Workshop on Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region, Chiness Taipei, 17th July 2008. <u>http://www.netd.itri.org.tw/apec/presentations-</u> <u>pdf/Japan_Yasunori_TAKEI_Issues_of_Bio_Diesel_and_Harmonized</u> <u>Specification.pdf</u> accessed on December 21, 2008.
- ^{20/} Arai M., Saito T., Furuhata T., Effect of Biodiesel Fuel on Direct Injection Diesel Engine Performance. Journal of Propulsion and Power, Vol. 24, No. 3. May – June (2008). <u>http://pdf.aiaa.org/jaPreview/JPP/2008/PVJA20133.pdf</u> accessed on February 3, 2009.

- ^{21/} Lee J.S. (Bioenergy Research Center, KIER), Biodiesel in Korea, Presentation in APEC Workshop on Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region, Chiness Taipei, 16th July 2008. <u>http://www.netd.itri.org.tw/apec/presentations-pdf/Korea_Jin-Suk_Lee_Biodiesel_in_Korea.pdf</u> accessed on December 21, 2008.
- ^{22/} Wang W.G., Lyons D.W., Clark N.N., Gautam M., Emissions from Nine Heavy Trucks Fueled by Diesel and Biodiesel Blend without Engine Modification. Environ. Sci. Technol, 34: 933 –939 (2000). <u>http://www.biodiesel.org/resources/reportsdatabase/reports/tra/20000</u> <u>101 tra-036.pdf</u> accessed on February 3, 2009.
- ^{23/} Choo Y.M., Lau (Harrison) L.N., Yung C.L. (Malaysian Palm Oil Board MPOB), Biodiesel Standard Development in Malaysia & Impacts of Palm Biodiesel on Engines and Emissions, Presentation in APEC Workshop on Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region & the Fourth Meeting of the APEC Biofuels Task Force, Thailand, 25th October 2007. <u>http://www.tistr.or.th/APEC website/APEC pdfs/A-9 Dr.%20Choo Bangkok APEC%20-%2025%20Oct%202007.pdf</u> accessed on December 21, 2008.
- ^{24/} Tathbauer J., Bacovsky D., Prankl H., Worgetter M., Korbitz W., Local and Innovative Biodiesel New Feedstock Blending Recipes for Improved Fuel Properties. <u>http://www.blt.bmlf.gv.at/veroeff/0886 Local and innovative biodies</u> <u>el.pdf</u> accessed February 3, 2009.
- ^{25/} Mittelbach M., Schober S., The Influence of Antioxidants on the Oxidation Stability of Biodiesel, JAOCS, Vol. 80, no. 8 (2003) 817-823.
- ^{26/} Mittelbach M., Schober S., The impact of antioxidants on Biodiesel Oxidation Stability, Eur. J. Lipid Sci.Technol. 106 (2004) 382-389.

^{27/} http://www.itdg.org.pe/publicaciones/Biodiesel/fher.pdf

^{28/} Tang H., Wang A., Sally S.O., Ng (Simon) K.Y., The effect of Natural and Synthetic Antioxidants on the Oxidative Stability of Biodiesel. J. Am Oil Chem Soc (2008) 85:373-382.

- ^{29/} Loh S.K., Chew S.M., May C.Y., Oxidative Stability and Storage Behaviour of Fatty Acid Methyl Esters Derived from Used Palm Oil, JAOCS, Vol. 83, no. 11 (2006) 947-952.
- ^{30/} Thanmongkhon Y., Thepkhun P., Sonthisawate T., Suemanotham A., Wongharn P., Petchtabtim K., Daycharugk P., Jenvanitpanjakul P. and Yoshimura Y., Stability Testing for Biodiesel Storage, presented at Pure and Applied Chemistry International Conference (PACCON 2008), Bangkok, Thailand, during January 30 - February 1, 2008.
- ^{31/} <u>http://www.agqm-biodiesel.de</u>
- ^{32/} Yung C.L, Choo Y.M., Cheng S.F., Ma A.N., Chuah C.H, Barison Y. The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel, Vol. 85 (2006) 867 – 870.
- ^{33/} Tripartite Task Force, White Paper on Internationally Compatible Biofuel Standards, Brazil, European Union & United States of America (2007).
- ^{34/} WWFC (World Wide Fuel Charter), Proposal of the World Wide Fuel Chart (WWFC) Guidelines, July 2008. <u>http://www.autoalliance.org/download.cfm?Downloadfile=6F2FCC2B</u> <u>-1D09-317F-BBEC2CB2EEBC7186</u> accessed on DEC 21, 2008.
- ^{35/}<u>http://www.iso.org/iso/standards_development/technical_committees/list_of</u> <u>iso_technical_committees/iso_technical_committee.htm?commid=473</u> <u>56</u> accessed on DEC 21, 2008.
- ^{36/} RSB (Roundtable on Sustainable Biofuels), Global Principles and Criteria for Sustainable Biofuels Production "Version Zero), August 2008. <u>http://www.bioenergywiki.net/images/f/f2/Version_zero.pdf</u> accessed on DEC 10, 2008.

10. APPENDICES

Appendix A. Participants

Country		Guest Name	Address
Australia	1	Mr. Adrian Philip Lake	Bio Energy Resources (Pacific) Pty Umited 13 Apprentice Drive, Berketey Vale NSW 2261 Australia
	2	Ms. Marie Taylor	Australian Government, Department of Industry Tourism and Resources Industry House, 10 Binara Street Canbera City ACT 2601 GPO Box. 9839 Canberra ACT 2601 Australia
	3	Dr. Tom Beer	CSIRO, Energy Transformed, National Research Flagship Limestone Avenue, Campbell 2612, Australia
Canada	4	Dr. Mark Stumborg	Agriculture and Agri-Food Canada, SPARC 1 Airport, Box 1030, Swift Current, Saskatchchewan S9H 3X2, Canada
China	5	Mr. Song Yanqin	Research Management and International Coliaboration Division Energy Research Institute, National Development and Reform Comission B1518, A11 Muxidibeili, Xicheng Beijing, 100038, China
Chinese Taipei	6	Mr. Chih-Wei Wu	Bureau of Energy Ministry of Economic Affairs 12 F. No.2, Fu-Hsing North Road Taipai 104, Taiwan, R.O.C.
	7 8 9	Mr. Cheng-Chuan Lu Mr. Han-Wen Chu Dr. Hom-Ti Lee	Industrial Technology Research Institute (ITRI), Chinese Taipei Rm. 309, Bldg. 64, 195, Sec 4,
	10	Dr. Seng-Rung Wu	Chung Hsing Rd. Chutung, Hsinchu, Taiwan 310, R.O.C.

Participants A1. The 1st APEC Workshop, 25-26 October 2007, Thailand

Country		Guest Name	Address
Hong Kong	11	Mr. Wu, Wai Kit, Eddie	Electrical and Mechanical Services
Hong Kong	11	Wii. Wu, Wai Kit, Edule	Department
			The Government of the Hong
			Kong Special Administrative
			Region
			3 Kai Shing Street, Kowloon,
			Hong Kong.
Indonesia	12	Dr. Dadan Dusdiawa	Ministry of Energy and Mineral
maonesia	12	Di. Dadan Dusalawa	Resources
			Directorate of New Renewable
			Energy and Energy Conservation
			Jl. HR. Rasuna Said Blok X-2, Kav.
			07-08 Jakarta 12950 Indonesia
	13	Dr. Tatang Hernas	Department of Chemical
		Soerawidjaja	Engineering Institute
			Teknologi Bandung
			Ganesha No.10, Bangdung 40132,
			Indonesia
Japan	14	Mr. Kenneth Bradley	New Energy and Industrial
5 I		Johnson	Technology Development
	15	Yuji Ogino	Organization (NEDO)
		, ,	18F Muza Kawasaki Building, 1310,
			Omiya-cho, Saiwai-ku, Kawasaki
			City Kanagawa 212-8554, Japan
	16	Dr. Shinichi Goto	National Institute of Advanced
			Industrial Science and
			Technology (AIST)
			1-2-1 Namaki, Tsukuba, Ibaraki,
			305-8564 Japan
	17	Mr. Tetsuji Tomita	The Institute of Energy
			Economics, Japan
			Inui Bldg., Kachidoki,
			134 Kachidoki 1-Chome,
			Chuo-Ku, Tokyo 104-0054 Japan
	18	Mr. Yasunori Takei	Material Engineering Div.1/,
			Toyota Motor Corporation
			1 Toyota-cho, Toyota, Aichi 4771-
			8572 Japan

Participants A1._(Cont.)

Participants A1._(Cont.)

1	Participants A1(Cont.)				
Country	10	Guest Name	Address		
Korea	19	Dr. Jae-Kon Kim	Research Center, Korea Institute of Petroleum Quality 653-1, Yangcheong-ri, Ochang-eup, Cheongwon-gun, Chungcheongbuk-do, 363-883 Republic of Korea		
	20	Dr. Jeong Hwan Bae	Korea Energy Economic Institute Division of New & Renewable Energy Study 665-1, Naeson 2-dong, Uiwang-si Gyeonggi-do, Korea 437-713		
	21	Mr. Minjung Baik	Korea Energy Management Corporation (KEMCO) 1157, Pungdukchun-dogn, Suji-gu, Yongin-si, Kyonggi-do, 448-994, Republic of Korea		
Malaysia	22	Dr. Choo Yuen May	Malaysian Palm Oil Board (MPOB)		
	23	Mr. Harrison Lau Lik Nang	P.O. Box 10620, 50720 Kuala Lumpur, Malaysia		
	24	Mr. Jamil Nordin	Lembaga Minyak Sawit Malaysia, Malaysian Palm Oil Board (MPOB) Ministry of Plantation Industries and Commodities Wisma Sawit, Lot 6, SS6 Jalan Perbondaran, 47301 Kelana Jaya, Selanga, Malaysia		
	25	Ms. Norhana Abdul Majld	Kementerian Perusahaan Perladangan Dan Komoditi Malaysia Ministry of Plantation Industries and Commodities Malaysia No. 15, Aras 6-13, Persiaran Perdana, Precint 2, 62654 Putrajaya, Malaysia		
New Zealand	26	Dr. David F.S. Natusch	Resource Development Ltd. 65A Liverton Rd., Belmont, P.O. Box 31406, Lower Hutt, New Zealand		

Country		Guest Name	Address
Philippines	27	Mr. Clovis T. Tupas	Phillippine National Oil
		-	Company (PNOC) Alternative
			Fuels Corporation
			PNOC Building VI, Energy
			Center Merritt Rd., Port
			Bonifacio, Taguig city Metro
			Manila 1201 Philippines
	28	Dr. Norberto A. Orcullo Jr.	College of Business
			Administraton,
			De La Salle University-
			Dasmarinas
			Dasmarinas, Cavite,
			Philipplines
Singapore	29	Mr. Karen Chan	Hart Energy Publishing, Pte Ltd.
			7 Amoy St., #02-06, Singapore
			049949
	30	Mr. Kuntal Vora	Hart Energy Consulting
			7 Amoy St., #02-06, Singapore
			049949
	31	Ms. Poh Sho Siam	Energy Market Authority
			111 Somerset Road # 15-05
			Singapore 238164
South	32	Mr. Raoul Goosen	Consultant
Africa			P.O. Box 414146, Craighall,
Theilerd	22	Ma Aieria Detterener et ei	South Africa
Thailand	33	Mr. Ajarin Pattanapanchai	Board of Investment (BOI)
	34	Mr. Mahanop Karnsuta	555 Wipawadee Rangasit Rd.
	35	Mr. Thaworn Kantawong	Lardyao, Jatujack, Bangkok 10900, Thailand
	26	Ms. Amornrat Suemanotham	Thailand Institute of
	36 37		
	37	Mr. Anun Rungporntavewat Mr. Chana Prechamanidkul	Scientific and Technological Research (TISTR)
	39	Ms. Chanchira Sinoulchan	35 Mo. 3, Technopolis, Klong
	40	Mrs. Panida Thepkhun	5, Prathumthanee, 12120, Thailand
	41	Ms. Peesamai Jenvanitpanjakul	Inalianu
	42	Mr. Phichai Wongharn Mr. Suchart Teekakul	
	43		
	44	Dr. Suparp Artjariyasripong	
	45	Mr. Surapol Vatanawong	
	46	Dr. Teerapatr Srinorakutara	
	47	Ms. Thanita Southsawate	
	48	Mr. Yoothana thanmongkol	

Participants A1._(Cont.)

Participants A1._(Cont.)

Country		Guest Name	Address
Thailand	49	Mr. Bunlue Sripodok	Pure Biodiesel Company
(Cont.)	17		Limited
(20110)			14th Fl., Tower III SCB Park Plaza,
			19 Ratchadapisek Rd. Chatuchak
			Bangkok 10900, Thailand
	50	Mr. Jo Sajjarachun	Green Power Corporation
	00	in jo sujjarasnar	108 Khumklao Rd., Saensab,
			Minburi, Bangkok 10510
			Thailand
	51	Ms. Jularat Seehra	Office of the Permanent
			Secretary,
	52	Ms. Saowanee Musitang	Ministry of Science and
		0	Technology
			Rama VI Rd. Ratchathewi
			Bangkok Thailand 10400
	53	Mr. Khanchit Chaisupho	General Motors (Thailand) Ltd.
			Level 21 Rasa Tower 555
			Phaholyothin Rd., Jatuchak,
			Jatuchak, Bangkok 10900,
			Thailand
	54	Ms. Laksame Ruangsri	Toyota Motor Asia Pacific
			Engineering and Manufacturing
			Co. Ltd.
			99 M. 5 Ban-Ragad,
			Bang Bo Samutprakarn 10560
			Thailand
	55	Ms. Maythinee Sirikulbodee	Bangkok Renewable Energy
	56	Ms. Phanpilash Saengthet	Company Limited
			898/39-40 SV city Tower 23rd
			Floor, Rama 3 Road,
			Bangpongpang, Yanawa,
			Bangkok 10120, Thailand
	57	Mr. Natikorn Prakobboon	Department of Alternative
	58	Mr. Pongsak Prommokorn	Energy Development and
			Efficiency (DEDE)
			Ministry of Energy
			17 Rama 1 Rd. Kasatsuk Bridge
			Bangkok 10330 Thailand

Country		Guest Name	Address
Thailand	59	Dr. Nuwong Chollacoop	National Metal and
(Cont.)	60	Dr. Paritud Bhandhubanyong	Materials Technology
	61	Mrs. Siriluck Nivitchanyong	Center (MTEC)
	62	Dr. Subongkoj Topaiboul	114 Thailand Science
			Park,Paholyothin Rd. Klong 1,
			Klong Luang, Pathumthani
			12120
	63	Ms. Oranuch Tritnengtusana	PricewaterhouseCoopers Abas
			Ltd.
			15th Floor Bangkok City Tower
			179/74-80 South Sothorn Rd.
			Bangkok 10120, Thailand
	64	Ms. Pimchan Surachaipanya	IRPC Public Company Limited
	65	Mr. Suthee Keepthong	1441, Sun Tower B, 123
	66	Mr. Teerawut Amornpot	Vibpavadi Rangsit Rd.,
			Chatuchak, Bangkok 10900,
			Thailand
	67	Ms. Pontip Kasemkamolkt	P.J. Probiz Co., Ltd.
	68	Mr. Pornchai Chruakanchana	33/63-4 Saint Louis 3, Chan Rd.,
			Sathorn, Bangkok 10120
			Thailand
	69	Mr. Pramote Yantaksa	Department of Energy Business,
			Ministry of Energy
			222 Thansettakij Bld., 8th Fl.
			Vibhavadi Rangsit Rd.
			Chatuchak, Bangkok 10900
	70		Thailand
	70	Mr. Prasert Angkawinijwong	Toyota Motor Thailand Co. Ltd.
			186/1 M.1 Old Railway Rd.
			Samrongtai, Phrapradaeng,
	71	Mrs. Ratanavalee In Ochanon	Samutprakarn 10130 Thailand
	/1	IVIIS. Katanavalee In Ochanon	PTT Public Company Limited 71 M.2 Phahonyothin Rd., Wang
			Noi, Ayuthaya 13170 Thailand
	72	Dr. Supattra Chardshushai	Agricultural Development
	12	Dr. Supattra Chordchuchai	Policy Planning, NESDB
			962 Krung Kason Rd., Bangkok
			10100
	73	Mr. Suriya Ayachanun	Chumporn Palm Oil, Thailand
	75		1168/65 Lumpini Tower 30 A Fl.,
			Rama IV Rd., Sathorn, Bangkok
			10120 Thailand
			10120 Inaliana

Participants A1._(Cont.)

Participants A1._(Cont.)

Participants A1(Cont.)				
Country		Guest Name	Address	
Thailand	74	Mr. Tanawat Boonpradith	Thailand Automotive Institute	
(Cont.)			655 Soi 1 Bangpoo Industrial	
			Estate M.2 Sukhumvit Rd.,	
			Bangpoo Mai, Samutprakarn,	
			10280, Thailand	
	75	Mr. Tcoapol Katupha	Abacus Renewable Energy	
	76	Mr. Terapol Ketphan	Corp, Thai Carbon Fund	
			1002 New Petchaburi Rd., 3 Fl.,	
			R.Modern House, Bangkok	
			Thailand	
	77	Mr. Thanawat Koomsin	Ford Asia Pacific	
			193/82-6 Ratchadapisek Rd.,	
			Klongtoey	
			Bangkok, Thailand 10110	
	78	Mr. Trakarn Chindavijak	Asia-Pacific & Africa	
			Government Affairs, Ford	
			Motor Company	
			19th Floor Lake Rajada Office	
			Complex, 193/82-6	
			Ratchadapisek Rd., Klongtoey,	
			Bangkok 10110, Thailand	
	79	Dr. Winida Jinsart	Chulalongkorn University	
			Phayathai, Bangkok 10330	
			Thailand	
US	80	Ms. Anelia Milbrandt	NREL	
			1617 Cole Boulevard, Golden,	
			Colorado 80401-3393 USA.	
	81	Mr. C. Harvey Major	U.S. Dept. of Energy	
	82	Mr. Jeffrey Skeer	1000 Independence Ave.,	
			SW, Washington DC 20585, USA	
	83	Ms. Candace Vona	Hart Energy Consulting	
			1616 S. Voss, Suite 1000,	
			Houston Texas 7705-2627, USA	
	84	Dr. Cary N. Bloyd	Argonne National Laboratory,	
			USA	
			9700 South Cass Avenue, Bldg	
			900, Argonne, Il 60439-4832, USA	
	85	Mr. Douglas Jacobson	U.S. Commercial Service, US	
	86	Mr. Thomas Rial	Department of Commerce	
			100 North Sixth, Suite 210-C	
			Butler Square Building,	
			Minneapolis, Minnesota, USA.	

Country		Guest Name	Address
US (Cont.)	87	Dr. John Bennett	Ford Motor Company Ltd.,
			Dunton Technical Centre
			G8-15/GE-C05, Laindon,
			Basildon, Essex, Great Britain,
			SS15 6EE
	88	Dr. Jonna Hamilton	United States Department of
	89	Ms. Teresa Mckeivier	Agriculture Foreign
			Agricultural Service
			AAAS Science & Technology
			Policy Fellow, 1400
			Independence Ave., SW, Mail
			Stop 1052, Washington, DC
			20250-1052, USA.
	90	Mr. Steven Howell	ASTM/MARC-IV
			101 E. Main Street, Suite 2,
			Kearney Missouri 64060, USA

Participants A1._(Cont.)

Country		Guest Name	Address
Canada	1	Dr. Mark Stumborg	Agriculture and Agri-Food
			Canada, SPARC
			1 Airport, Box 1030, Swift
			Current, Saskatchchewan S9H
			3X2, Canada
Chinese	2	Dr. Hom-Ti (Tom) Lee	Industrial Technology
Taipei	3	Mr. Ming-Der Chen	Research Institute (ITRI),
	4	Dr. Seng-Rung Wu	Chinese Taipei
	5	Ms. Shur-Fang Lin	Rm. 309, Bldg. 64, 195, Sec 4,.
	6	Dr. Wen-chang (Jame) Lu	Chung Hsing Rd., Chutung,
	7	Dr. Yie-Zu (Robert) Hu	Hsinchu, Taiwan 310,R.O.C
	8	Dr. Yun-Huin Lin	
	9	Local participants	Chinese Taipei
	-		
	46		
India	47	Dr. Onkar Singh Tyagi	Indian Institute of Petroleum
			(IIP), Council of Scientific &
			Industrial Research (CSIR)
Indonesia	48	Dr. Andi Novianto	Minister for Energy, Mineral
			Resources and Forestry
			Coordinating Ministry for
			Economic Affairs
			Main Building Fifth Floor
			Lapangan Banteng Timur No. 2-4
-	10		Jakarta 10710, Indonesia
Japan	49	Dr. Kenneth Bradley Johnson	New Energy and Industrial
			Technology Development
			Orgainzation (NEDO)
			18F Muza Kawasaki Building,
			1310, Omiya-cho, Saiwai-ku,
			Kawasaki City Kanagawa 212-
	50	Dr. Shinishi Goto	8554, Japan National Institute of Advanced
	50	Dr. Sninisni Goto	Industrial Science and
			Technology (AIST) 1-2-1 Namaki, Tsukuba, Ibaraki,
			305-8564 Japan
	51	Mr. Yasunori Takei	Material Engineering Div.1/,
	51	wii. Fasunon Takei	Toyota Motor Corporation
			1 Toyota-cho, Toyota, Aichi 4771-
			8572 Japan

Participants A2. The 2nd APEC Workshop, 16-17 July 2008, Chinese Taipei

Country		Guest Name	Address
Korea	52	Dr. Jae-Kon Kim	Korea Institute of Petroleum
	53	Mr. Youm-Seok Kang	Quality
			466-5, Baekhyeon-dong,
			Bundang-gu, Seongnam-si,
			Gyeonggi-do 463-420, South
			Korea
	54	Dr. Jin-Suk Lee	Korea Institute of Energy
			Research (KIER)
			102 Gajeong-ro, Yuseong-gu,
			Daejeon 305-343, Korea
	55	Mr. Jun-Seong Lee	Korea Energy Management
			Corporation (KEMCO)
			1157, Pungdukchun-dogn, Suji-
			gu, Yongin-si, Kyonggi-do, 448-
			994, Republic of Korea
Malaysia	56	Mr. Chee Liang Yung	Malaysian Palm Oil Board (MPOB)
	57	Mr. Harrison Lau Lik Nang	P.O. Box 10620, 50720 Kuala
			Lumpur, Malaysia
New	48	Dr. David Natush	Resource Development Ltd.
Zealand			65A Liverton Rd., Belmont, P.O.
			Box 31406, Lower Hutt, New
			Zealand
Singapore	59	Mr. Ding Li Ang	Hart Energy Consulting
			7 Amoy St., #02-06, Singapore
			049949
	60	Dr. Jeffrey Philip Obbard	National University of
			Singapore
			21 Lower Kent Ridge Road,
			Singapore 119077
	61	Dr. Rong Yan	Advanced Clean Energy Center
			Institute of Environmental
			Science and
			Engineering, Nanyang
			Technological University
Thailand	62	Ms. Chanchira Sinoulchan	Thailand Institute of
	63	Ms. Katsirin Hanchanapan	Scientific and Technological
	64	Ms. Peesamai Jenvanitpanjakul	Research (TISTR)
	65	Mr. Yoothana Thanmomgkhon	35 Mo. 3, Technopolis, Klong 5,
			Prathumthanee, 12120, Thailand

Participants A2._(Cont.)

Participants	A2((Cont.)	
--------------	-----	---------	--

Country	Guest Name		Address
Thailand	66	Ms. Laksamee Ruangsri	Toyota Motor Asia Pacific
(Cont.)		Ū.	Engineering and Manufacturing
			Co. Ltd.
			99 M. 5 Ban-Ragad, Bang Bo
			Samutprakarn 10560 Thailand
	67	Dr. Nuwong Chollacoop	National Metal and Materials
	68	Dr. Siriluck Nivitchanyong	Technology Center (MTEC)
	69	Dr. Werasak Udomdichdecha	114 Thailand Science Park,
			Paholyothin Rd. Klong 1 Klong
			Luang Pathumthani 12120
			Thailand
	70	Ms. Pathra Hittrawat	Toyota Motor Thailand Co. Ltd.
	71	Mr. Prasert Angkawinijwong	186/1 M.1 Old Railway Rd.
			Samrongtai, Phrapradaeng,
			Samutprakarn 10130 Thailand
	72	Mr. Promote Yantaksa	Department of Energy Business,
			Ministry of Energy
			222 Thansettakij Bld., 8th Fl.
			Vibhavadi Rangsit Rd.
			Chatuchak, Bangkok 10900
			Thailand
	73	Mrs. Ratanavalee In Ochanon	PTT Public Company Limited
			71 M.2 Phahonyothin Rd., Wang
110	= 4		Noi, Ayuthaya 13170 Thailand
US	74	Dr. Cary N. Bloyd	Argonne National Laboratory, USA
			9700 South Cass Avenue, Bldg
	75	Ms. Candace Vona	900, Argonne, Il 60439-4832, USA Hart Energy Consulting
	75	wis. Califiate volta	1616 S. Voss, Suite 1000, Houston
			Texas 7705-2627, USA
	76	Mr. Steven Howell	ASTM/MARC-IV
	10		101 E. Main Street, Suite 2,
			Kearney Missouri 64060, USA
			Kearney Missouri 64060, USA

Thailand Institute of Scientific and Technological Research (TISTR) 35 Mu 3, Technopolis, Khlong 5, Khlong Luang, Pathum Thani 12120, THAILAND Tel : (66) 2577 9000 Fax : (66) 2577 9009 E-mail : <u>tistr@tistr.or.th</u> Website : http://www.tistr.or.th