Consumer LED Lamps: Industry, Technology and What's Next

Kathryn M. Conway Conway & Silver, Energy Associates LLC dba LED Consulting Nassau, NY, USA

Asia-Pacific Economic Cooperation

Australian Government

Department of Climate Change and Energy Efficiency

LED Lamps: What Are We Talking About?

- For use in residences, by consumers.
- Wherein the light source is one or more light-emitting diodes (LEDs). Typically these are blue-emitting LEDs that are packaged with yellow-emitting phosphors, to create what we see as white light.
- Meant to be operated on mains power, and, where previously the consumer used a lamp of the A-line ("light bulb") or G-line ("globe") type.
- Where previously the light source would have been: incandescent (I), halogen incandescent (HI) or compact fluorescent lamp (CFL).

LED Lamps: What's Inside?

Light source: LEDs, in a package, or, mounted on a circuit board.

- **Optics:** phosphors in silicone gel, or, in a plastic lens; micro-structured lenses for beam pattern control; reflectors.
- **Electrical/electronics:** circuit board; AC to DC transformer; circuit driver; feedback loops & sensors; controls (on/off; dimming).

Thermal: conductive adhesives; heat sink.

LED Industry Status: Demand

- **Demand for illumination products is increasing;** they should exceed 10% of overall blue chip demand in 2012.
- Global LED chip leaders completed extensive build-outs of their **manufacturing facilities**.
- Yields will improve, lowering the per-chip cost for illumination-grade packages.
- Smaller manufacturers and start-ups have difficulty competing as large manufacturers clear out inventory. This may lead to industry consolidation.

LED Industry Status: Focus on Illumination

- Illumination-grade LED packages: more difficult to make than LED packages for displays. Must conform tightly to specifications, and, they may use multiple LEDs within each package.
- China invested heavily in LED chip manufacturing. Manufacturers must focus on quality control to get past the initial start-up of their production lines.
- Much of China's initial output of LED chips will be for displays & outdoors, not for indoor illumination. LED lamps made in China for export often use blue chips imported from Europe, USA & Japan.

LED Industry Status: Moving Toward Ecosystems

- LED ecosystems are clusters of companies, facilities and personnel that develop expertise in anticipating demand, designing and manufacturing just-in-time deliveries of products to customers. Often government supports research and funding for ecosystem development.
- Examples of **existing LED industry ecosystems** are the Optics Valley in Korea; LED-industry-related companies in Chinese Taipei; and, Silicon Valley in California. Singapore is the global center for Philips' chip manufacturing. Penang, Malaysia has a strong ecosystem for LED packaging.
- China is shifting toward funding more robust ecosystems and supply chains for LED packaging and LED lighting products.

LED Lamp Assembly

- Hand-assembled on small lines.
- LED lamp manufacturing requires many electronics, thermal and optical component suppliers nearby, to meet customer orders for rapid assembly and delivery.
- Extensive testing facilities are needed, too. Most lamps are tested for 24 to 48 hours before packing & shipping, to identify early failures.

LEDs Require Test Equipment & Quality Assurance at Each Step of Manufacturing

Images: Civilight Shenzhen Semiconductor Lighting Co., Ltd.

神经 把唱曲出始间

Technology Status and Forecast: Lumen Output & Lamp Efficacy

- LED chip, package and lamp **roadmaps** differ significantly.
- Industry has excellent record of achieving laboratory milestones; getting better at bringing high-efficacy lamps to market.
- Overall lamp quality varies considerably by country, due to **consumer protections** (or lack of them!)
- Illumination-grade chips and packages remain difficult for any but the leading manufacturers to produce consistently, in high volume.

Technology Status and Forecast: Lumen Output & Lamp Efficacy

- All components in the lamp must be optimized as a SYSTEM to take best advantage of the LEDs. The best LED chips won't perform well without an appropriate circuit driver.
- Examples: If the chips are not driven properly and they get too hot, the wavelength emitted shifts to blue, and will not fully energize the yellow/red phosphors. This leads to lower light output and lower efficacy.
- The **weakest link** in the system determines the LED lamp's performance. Often this is the circuit driver; seldom is it the LED.

LED Lamps: Different Than Previous Light Sources

Light Source	CCT: Correlated Color Temperature	CRI*: Color Rendering Index	Lamp Efficacy (lumens/ watt)
Incandescent	2700-2800	100	5—17
Halogen- incandescent	2775-4400	98—100	11—24
Compact fluorescent**	2400-6500+	70—92	35—70
LED***	2400-6500+	70—95+	15—90+

Sources: Manufacturers literature, online catalogs, literature reviews.

* CRI may be replaced by a new metric, "color quality scale" (CQS)

** Requires special handling: contains mercury.

Technology Status and Forecast: Lumen Output, Lamp Efficacy & Lighting Quality

- Technical developments to improve lamp design and quality:
 - -Higher efficacy LED chips \rightarrow less bulky heat sinks.
 - -Higher voltage LEDs \rightarrow increase lamp efficacy.
 - More consistent binning and use of multichip packages → increase light output.
 - Feedback loops → improve lumen maintenance and reduce color shifts.
- High quality circuit drivers and assembly line QA are most important for assuring quality to the consumer, because LEDs seldom fail. More often, the circuit driver or a solder joint fails, causing the LED lamp to fail, too.

Technology Status: Comparing LED to Incandescent Lamps

Range of Results, U.S. DOE CALiPER Testing*	Incandescent	Halogen- Incandescent	LED	<i>Consumer's View of LEDs</i>
Number of Models	7	5	26	
Input Power (W)	55 to 101	71 to 98	1 to 14	Great!
Initial Efficacy (Im/W)	7 to 17	11 to 24	16 to 97	Great!
ССТ (К)	2491 to 2854	2805 to 3020	2643 to 7272	Buyer Beware!
CRI	99 to 100	84 to 100	49 to 93	Buyer Beware!
Initial Light Output	Predictable	Predictable	Varies	Caution!

Results in rows 1 to 5 published by U.S. DOE CALIPER, July 2006 to October 2011. Accessed November 2011 at: <u>http://www1.eere.energy.gov/buildings/ssl/caliper/default.aspx</u> *NOTE: Opinions in row 6 and column 4 are those of the author, not of U.S. DOE.

Q: When does 43W = 60W? A: Only when you buy light bulbs!

October 2011, USA Reality Check: LED Lamps in a "Big Box" Do-It-Yourself" Retailer

Initial light	Input Power	Claiming to	Useful Life	Warranty	Retail
output (lm)	Demand (W)	Replace (W)	(hr or yr)	(Years)	Price
					(USD)
240	7	25	25,000 hr	6	14.97
			15 yr		
240	5	25	25,000 hr	6	24.97
			15 yr		
450	8	40	50,000 hr	5	19.97
470	8	40	22.8 yr	6	21.97
510	8	40	23 yr		17.97
800	12.5	60	22.8 yr	6	24.97
850	13	60	25,000 hr	5	23.97
950	13	60	25,000 hr	5	25.97
			23 yr		

Inaccurate Performance Claims: What to Do?

- Require a **label or tech data sheet** with standardized test info for lamps (not just for LEDs).
- Conduct outreach to inform manufacturers and distributors of standards. Offer recognition for best performance.
 Example: Multi-million USD "L-Prize" awarded to Philips in August, 2011.
- Conduct **random testing. Publish the results.** Institute a third-party appeal procedure, but reserve the right to impose reasonable penalties for violations of the law.
- Require "no-questions-asked" return or warranty terms from manufacturers, distributors or retailers. Inform buyers of their legal recourse if the warranty is not honored.

"Best" Applications for LED Lamps*

- **Depends** on level of lighting sophistication in the home.
- Essential lighting services:
 - Indoors: (safe mobility and good orientation; face-to-face communication; fine-motor tasks such as reading, preparing food & grooming; extended work and leisure hours; aesthetics of the home)
 - Outdoors: (sense of security; safe mobility and good orientation; wide-area communication; enhance use of space during dark hours.
- *Linear LED lamps may eventually be suitable, but for now linear fluorescent lamps have higher light output, higher efficacy and lower cost.

Applications for LED Lamps in Residences

- Consider the occupants' needs for lighting services, available LED features & each room's average hours of lighting use.
 - -Outdoors: thresholds; outdoor security.
 - Indoors: kitchen, ambient and task; stairwells; tasks (especially reading, assembly and other fine tasks).
 - -**Outdoors and indoors:** Any directional lamp application where the lamp is close to the illuminated surface; or, where the lamp is operated 12 to 24 hours per day.
- Controls reduce wasted hours of lighting energy. Choose LED lamps that are compatible with:
 - Occupancy sensors
 - -Dimmers
 - -Timers

LEDs: Changing the Lighting Industry

- LED lighting is more like other **consumer electronics**, no longer the exclusive domain of lamp companies.
- Consumer electronics companies don't know much about illumination, but are invading the territory of lamp companies.
- Therefore, **lighting manufacturers must "get savvy"** about manufacturing and marketing consumer electronics.
- **"To do list":** update consumer psychographic profiles, put more emphasis on social marketing, increase direct and online sales, and, better understand how to communicate life-cycle costs and benefits.

LEDs: Changing the Lighting Industry

- LED lamps will become far more efficient (systemlevel), but will require a more integrated manufacturing community to deliver quality at reasonable cost.
- Eventually, disposable lamps will disappear!
- Instead, we will have dedicated LED luminaires, and, LED lighting systems that are embedded in building and furniture infrastructure.

Thank You!

BARRIE BERNELLE PROVIDENCE

PAPER FROM:

APEC LED WORKSHOP: POLICIES TO PROTECT AND EDUCATE CONSUMERS

APEC#212-RE-04.1

© 2012 APEC SECRETARIAT

Singapore, 1-2 November 2011