

Rooftop Solar PV System Designers and Installers

Training Curriculum

APEC Secretariat

March 2015

INVERTER - GRID

Training of PV Designer and Installer

Asia-Pacific Economic Cooperation

Contents

A. How PV generate electricity?

- B. Solar cell characteristics
- C. Inverter grid structure

Questions

APEC

Asia-Pacific Economic Cooperation

- An array of the solar cells converts
- solar energy into a usable amount of direct current (DC) electricity.

A. How PV generate electricity

Electrons (negatively charged) are

knocked loose from their atoms,

allowing them to flow through the

material to produce electricity. Due

Inverter - Grid

B. Solar cell characteristics

- PV can be modeled by a current source in parallel with a diode, shunt and series resistances
- ILoad represents the max current of the solar panel (short current)

- Diode forms the I-V characteristic
- Shunt resistor (R_{sн}) represents the leakage currents (very small)
- Series resistance (RS) represents the wiring losses

B. Solar cell characteristics: example

I-V curve varies with real working conditions – high dependency on the irradiance and lower dependency on the temperature. This mean an inverter-grid should have MPPT technology to get maximum power during real conditions.

C. Inverter – grid structure

What is a solar inverter?

What are the types of solar inverters?

What are grid-tied solar inverters?

Where are grid-tied solar inverters used?

Grid Tie PV System

Grid Tie Without Battery Backup

PV Generator

String inverter

- Each inverter works at its individual maximum power point , one MPPT for one string or multiple strings
- Different conditions (e.g. irradiation, orientation, temperature, shading) are acceptable
- High voltage and less current

String inverter

- No generator connection box
- Short cable lengths
- Simple generator design
- Similar MPPT current for all required modules

 put similar modules into one string

11

String inverter

Source: Berlin water treatment plant

International Copper Association

Micro ("module") inverter

- No DC cabling
- Monitoring on module level is possible
- Shade on a module or faulty inverter does not affect the other strings, individual MPPTtracking possible
- Fits for modules with high power tolerances
- Safety extra-low voltage possible

Micro ("module") inverter

http://i01.i.aliimg.com/img/pb/026/793/069/1069793026_749.jpg

Micro ("module") inverter

http://pvshop.eu/userdata/gfx/81e6faa756f321b60b98feedf00b6ba2.jpg

International Copper Association Copper Alliance

Inverter - Grid 15

Inverter Types

Typical values	Micro Inverter	String Inverter
DC-Input power	200300 Wp	1100 kWp
DC-Voltage range	≤ 50 V	≤ 1000 V
DC-Current range	≤ 10 Amps	≤ 100 Amps
Efficiency	≤ 97%	≤ 98%
MPPTs	1	15
Phases	1	1 or 3
Voltage level	Lov voltage grid	Low voltage grid

Inverter Manufacturers

SUNWAYS Photovoltaic Technology

17

Relevant Specifications

Internation

Inverter efficiency

Sample efficiency curve for a grid-connected inverter

www.SMA-America.com

Peak efficiency

- Peak efficiency represent the highest efficiency that the inverter can achieve
- Most of grid-tie inverter have peak efficiencies of over 94%
- The energy lost during inversion is for the most part converted into heat
- This means that in order for an inverter to put out the rated amount of power it will need to have a power input that exceeds the output.
- a 5000 W inverter operating at full power at 95% efficiency will require an input of 5,263 W (rated power divided by efficiency).

Project Number : EWG 22/2013A

Produced By

Andre Susanto - <u>http://id.linkedin.com/in/andresusanto/</u> Castlerock Consulting - <u>http://www.castlerockasia.com/</u>

For Asia Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace Singapore 119616 Tel: (65) 68919 600 Fax: (65) 68919 690 Email: <u>info@apec.org</u> Website: <u>www.apec.org</u>

© 2015 APEC Secretariat

APEC#215-RE-03.9